3,047 research outputs found
Performance of twin two-dimensional wedge nozzles including thrust vectoring and reversing effects at speeds up to Mach 2.20
Transonic tunnel and supersonic pressure tunnel tests were reformed to determine the performance characteristics of twin nonaxisymmetric or two-dimensional nozzles with fixed shrouds and variable-geometry wedges. The effects of thrust vectoring, reversing, and installation of various tails were also studied. The investigation was conducted statically and at flight speeds up to a Mach number of 2.20. The total pressure ratio of the simulated jet exhaust was varied up to approximately 26 depending on Mach number. The Reynolds number per meter varied up to 13.20 x 1 million. An analytical study was made to determine the effect on calculated wave drag by varying the mathematical model used to simulate nozzle jet-exhaust plume
Effect of port corner geometry on the internal performance of a rotating-vane-type thrust reverser
An investigation has been conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel to determine the effects of reverser port geometry on the internal performance of a nonaxisymmetric rotating-vane-type thrust reverser. Thrust reverser vane positions representing a spoiled-trust (partially deployed) position and a full-reverse-thrust (fully deployed) position were tested with each port geometry variable. The effects of upstream port corner radius and wall angle on internal performance were determined. In addition, the effect of the length of a simulated cooling liner (blunt-base step) near the reverser port entrance was investigated; five different lengths were tested. All tests were conducted with no external flows, and nozzle pressure ratio was varied from 1.2 to 5.0
Aeropropulsive characteristics of twin single-expansion-ramp vectoring nozzles installed with forward-swept wings and canards
The Langley 16 foot transonic tunnel was used to determine the aeropropulsive characteristics of twin single-expansion-ramp vectoring nozzles installed in a wing-body configuration with forward-swept wings. The configuration was tested with and without fixed canards. The test conditions included free-stream Mach numbers of 0.60, 0.90, and 1.20. The model angle of attack ranged from -2 deg to 14 deg; the nozzle pressure ratio ranged from 1.0 (jet off) to 9.0. The Reynolds number based on the wing mean aerodynamic chord varied from 3.0 x 10 to the 6th power to 4.8 x 10 to the 6th power, depending on Mach number. Aerodynamic characteristics were analyzed to determine the effects of thrust vectoring and the canard effects on the wing-afterbody-nozzle and the wing-afterbody portions of the model. Thrust vectoring had no effect on the angle of attack for the onset of flow separation on the wing but resulted in reduced drag at angle-of-attack values above that required for wing flow separation. The canard was found to have little effect on the thrust-induced lift resulting from vectoring, since canard effects occurred primarily on the wing
Interference effects of thrust reversing on horizontal tail effectiveness of twin-engine fighter aircraft at Mach numbers from 0.15 to 0.90
An investigation was conducted in the Langley 16 foot Transonic Tunnel to determine the interference effects of thrust reversing on horizontal tail effectiveness of a twin engine, general research fighter model at approach and in-flight speeds. Twin vertical tails at three longitudinal locations were tested at a cant angle of 0 deg. One configuration was also tested at a cant angle of 20 deg. Two nonaxisymmetric nozzle reverser concepts were studied. Test data were obtained at Mach numbers of 0.15, 0.60, and 0.90 and at angles of attack from -3 to 9 deg. Nozzle pressure ratios varied from jet off to 7.0, depending upon Mach number. At landing approach speed (Mach number 0.15), thrust reverser operation usually resulted in large variations (up to 70% increase) in horizontal tail effectiveness as nozzle pressure ratio was varied at zero angle of attack or as angle of attack was varied at constant nozzle pressure ratio. There was always a decrease in effectiveness at Mach numbers of 0.60 and 0.90 as a result of reverser operation
Rotationally-invariant slave-bosons for Strongly Correlated Superconductors
We extend the rotationally invariant formulation of the slave-boson method to
superconducting states. This generalization, building on the recent work by
Lechermann et al. [Phys. Rev. B {\bf 76}, 155102 (2007)], allows to study
superconductivity in strongly correlated systems. We apply the formalism to a
specific case of strongly correlated superconductivity, as that found in a
multi-orbital Hubbard model for alkali-doped fullerides, where the
superconducting pairing has phonic origin, yet it has been shown to be favored
by strong correlation owing to the symmetry of the interaction. The method
allows to treat on the same footing the strong correlation effects and the
interorbital interactions driving superconductivity, and to capture the physics
of strongly correlated superconductivity, in which the proximity to a Mott
transition favors the superconducting phenomenon.Comment: 18 pages, 7 figure
A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle
A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle
Effect of simulated in-flight thrust reversing on vertical-tail loads of F-18 and F-15 airplane models
Investigations were conducted in the Langley 16-Foot Transonic Tunnel to provide data on a 0.10-scale model of the prototype F-18 airplane and a 0.047-scale model of the F-15 three-surface configuration (canard, wing, and horizontal tails). Test data were obtained at static conditions and at Mach numbers from 0.6 to 1.2 over an angle-of-attack range from 2 deg to 15 deg. Nozzle pressure ratio was varied from jet off to about 8.0
Polaronic and nonadiabatic phase diagram from anomalous isotope effects
Isotope effects (IEs) are powerful tool to probe directly the dependence of
many physical properties on the lattice dynamics. In this paper we invenstigate
the onset of anomalous IEs in the spinless Holstein model by employing the
dynamical mean field theory. We show that the isotope coefficients of the
electron effective mass and of the dressed phonon frequency are sizeable also
far away from the strong coupling polaronic crossover and mark the importance
of nonadiabatic lattice fluctuations in the weak to moderate coupling region.
We characterize the polaronic regime by the appearence of huge IEs. We draw a
nonadiabatic phase diagram in which we identify a novel crossover, not related
to polaronic features, where the IEs attain their largest anomalies.Comment: 5 pages, 4 figure
- …