2,537 research outputs found

    Theory of the Metal-Paramagnetic Mott-Jahn-Teller Insulator Transition in A_4C_{60}

    Full text link
    We study the unconventional insulating state in A_4C_{60} with a variety of approaches, including density functional calculations and dynamical mean-field theory. While the former predicts a metallic state, in disagreement with experiment, the latter yields a (paramagnetic) Mott-Jahn-Teller insulator. In that state, conduction between molecules is blocked by on-site Coulomb repulsion, magnetism is suppressed by intra-molecular Jahn-Teller effect, and important excitations (such as optical and spin gap) should be essentially intra-molecular. Experimental gaps of 0.5 eV and 0.1 eV respectively compare well with molecular ion values, in agreement with this picture.Comment: 4 pages, 2 postscript figure

    Isotope effects in the Hubbard-Holstein model within dynamical mean-field theory

    Full text link
    We study the isotope effects arising from the coupling of correlated electrons with dispersionless phonons by considering the Hubbard-Holstein model at half-filling within the dynamical mean-field theory. In particular we calculate the isotope effects on the quasi-particle spectral weight ZZ, the renormalized phonon frequency, and the static charge and spin susceptibilities. In the weakly correlated regime U/t1.5U/t \lesssim 1.5, where UU is the Hubbard repulsion and tt is the bare electron half-bandwidth, the physical properties are qualitatively similar to those characterizing the Holstein model in the absence of Coulomb repulsion, where the bipolaronic binding takes place at large electron-phonon coupling, and it reflects in divergent isotope responses. On the contrary in the strongly correlated regime U/t1.5U/t \gtrsim 1.5, where the bipolaronic metal-insulator transition becomes of first order, the isotope effects are bounded, suggesting that the first order transition is likely driven by an electronic mechanism, rather then by a lattice instability. These results point out how the isotope responses are extremely sensitive to phase boundaries and they may be used to characterize the competition between the electron-phonon coupling and the Hubbard repulsion.Comment: 10 pages, 8 figures. The paper has been already accepted on Phys. Rev.

    Pairing and polarization in systems with retarded interactions

    Full text link
    In a system where a boson (e.g, a phonon) of finite frequency ω0\omega_0 is coupled to electrons, two phenomena occur as the coupling is increased: electron pairing and polarization of the boson field. Within a path integral formalism and a Dynamical Mean-Field approach, we introduce {\it ad hoc} distribution function which allow us to pinpoint the two effects. When ω0\omega_0 is smaller than the bandwidth DD, pairing and polarization occur for fairly similar couplings for all considered temperatures. When ω0>D\omega_0 > D, the two phenomena tend to coincide only for Tω0T \gg \omega_0, but are no longer tied for low temperatures so that a state of paired particles without finite polarization is stabilized.Comment: 4 pages, 2 figure

    Temperature dependence of the optical spectral weight in the cuprates: Role of electron correlations

    Full text link
    We compare calculations based on the Dynamical Mean-Field Theory of the Hubbard model with the infrared spectral weight W(Ω,T)W(\Omega,T) of La2x_{2-x}Srx_xCuO4_4 and other cuprates. Without using fitting parameters we show that most of the anomalies found in W(Ω,T)W(\Omega,T) with respect to normal metals, including the existence of two different energy scales for the doping- and the TT-dependence of W(Ω,T)W(\Omega,T), can be ascribed to strong correlation effects.Comment: 4 pages, 3 figures. Minor corrections, corrected some typos and added reference

    Pressure induced magnetic phase separation in La0.75_{0.75}Ca0.25_{0.25}MnO3_{3} manganite

    Full text link
    The pressure dependence of the Curie temperature TC(P)_{C}(P) in La0.75_{0.75}Ca0.25_{0.25}MnO3_{3} was determined by neutron diffraction up to 8 GPa, and compared with the metallization temperature TIM(P)_{IM}(P) \cite{irprl}. The behavior of the two temperatures appears similar over the whole pressure range suggesting a key role of magnetic double exchange also in the pressure regime where the superexchange interaction is dominant. Coexistence of antiferromagnetic and ferromagnetic peaks at high pressure and low temperature indicates a phase separated regime which is well reproduced with a dynamical mean-field calculation for a simplified model. A new P-T phase diagram has been proposed on the basis of the whole set of experimental data.Comment: 5 pages, 4 figure

    An assessment of the effect of supersonic aircraft operations on the stratospheric ozone content

    Get PDF
    An assessment of the potential effect on stratospheric ozone of an advanced supersonic transport operations is presented. This assessment, which was undertaken because of NASA's desire for an up-to-date evaluation to guide programs for the development of supersonic technology and improved aircraft engine designs, uses the most recent chemical reaction rate data. From the results of the present assessment it would appear that realistic fleet sizes should not cause concern with regard to the depletion of the total ozone overburden. For example, the NOx emission of one type designed to cruise at 20 km altitude will cause the ozone overburden to increase by 0.03% to 0.12%, depending upon which vertical transport is used. These ozone changes can be compared with the predictions of a 1.74% ozone decrease (for 100 Large SST's flying at 20 km) made in 1974 by the FAA's Climatic Impact Assessment Program

    Off-equilibrium confined dynamics in a glassy system with level-crossing states

    Full text link
    We study analytically the dynamics of a generalized p-spin model, starting with a thermalized initial condition. The model presents birth and death of states, hence the dynamics (even starting at equilibrium) may go out of equilibrium when the temperature is varied. We give a full description of this constrained out of equilibrium behavior and we clarify the connection to the thermodynamics by computing (sub-dominant) TAP states, constrained to the starting equilibrium configuration.Comment: 10 pages, 3 figures; longer version with appendi

    Fiber suspension investigation in a backward-facing step by PIV

    Get PDF
    A dilute suspension (volume fraction 0.05%) of rod-like particles in a turbulent backward-facing step flow at Reynolds number ReH=14900, is investigated by means of Particle Image Velocimetry. Two-way interactions between fluid and dispersed phase are analyzed by exploiting the high spatial resolution of the acquisitions. Mutual interactions between phases can be investigated by considering flow turbulence modulations and phenomena related to preferential concentration and orientation of fibers. Slight turbulence enhancement is reported in the laden flow and concentration data show a moderate tendency of fibers to accumulate at the channel centreline. Orientation data display a strong preferential orientation of fibers. Local fiber orientation is correlated to the direction of maximum shear showing a high level of correlation also in the flow regions featuring strong gradients

    A multi-blob representation of semi-dilute polymer solutions

    Full text link
    A coarse-grained multi-blob description of polymer solutions is presented, based on soft, transferable effective interactions between bonded and non-bonded blobs. The number of blobs is chosen such that the blob density does not exceed their overlap threshold, allowing polymer concentrations to be explored deep into the semi-dilute regime. This quantitative multi-blob description is shown to preserve known scaling laws of polymer solutions and provides accurate estimates of amplitudes, while leading to orders of magnitude increase of simulation efficiency and allowing analytic calculations of structural and thermodynamic properties.Comment: 4 pages, 4 figure
    corecore