333 research outputs found

    Triangular Sierpinski Microwave Band-Stop Resonators for K-Band Filtering

    Get PDF
    Triangular resonators re-shaped with Sierpinski geometry were designed, manufactured, and tested for potential applications in the K-Band. Prototypes of band-stop filters working around 20 GHz and 26 GHz, interesting for RADAR and satellite communications, were studied in a coplanar waveguide (CPW) configuration. Single and coupled structures were analyzed to give evidence for: (i) the tuning of the resonance frequency by increasing the internal complexity of the triangle and (ii) resonance enhancement when coupled structures are considered. The exploited devices were part of the more extended family of metamaterial-inspired structures, and they were studied for their heuristic approach to the prediction of the spectrum using experimental results supported by electromagnetic simulations. As a result, a Sierpinski resonator, not only fed into but also fully embedded into a CPW environment, had a frequency response that was not easily determined by classical theoretical approaches

    MEMS-Switched Triangular and U-Shaped Band-Stop Resonators for K-Band Operation

    Get PDF
    Triangular resonators re-shaped into Sierpinski geometry and U-shaped resonators were designed, linking them with single-pole-double-through (SPDT) RF MEMS switches to provide frequency tuning for potential applications in the K-Band. Prototypes of band-stop narrowband filters working around 20 GHz and 26 GHz, interesting for RADAR and satellite communications, were studied in a coplanar waveguide (CPW) configuration, and the tuning was obtained by switching between two paths of the devices loaded with different resonators. As a result, dual-band operation or fine-tuning could be obtained depending on the choice of the resonator, acting as a building block. The studied filters belong to the more general group of devices inspired by a metamaterial design

    Enteric glia: A new player in inflammatory bowel diseases

    Get PDF
    In addition to the well-known involvement of macrophages and neutrophils, other cell types have been recently reported to substantially contribute to the onset and progression of inflammatory bowel diseases (IBD). Enteric glial cells (EGC) are the equivalent cell type of astrocyte in the central nervous system (CNS) and share with them many neurotrophic and neuro-immunomodulatory properties. This short review highlights the role of EGC in IBD, describing the role played by these cells in the maintenance of gut homeostasis, and their modulation of enteric neuronal activities. In pathological conditions, EGC have been reported to trigger and support bowel inflammation through the specific over-secretion of S100B protein, a pivotal neurotrophic factor able to induce chronic inflammatory changes in gut mucosa. New pharmacological tools that may improve the current therapeutic strategies for inflammatory bowel diseases (IBD), lowering side effects (i.e. corticosteroids) and costs (i.e. anti-TNFα monoclonal antibodies) represent a very important challenge for gastroenterologists and pharmacologists. Novel drugs capable to modulate enteric glia reactivity, limiting the pro-inflammatory release of S100B, may thus represent a significant innovation in the field of pharmacological interventions for inflammatory bowel diseases

    Characterization and Performance of PADME's Cherenkov-Based Small-Angle Calorimeter

    Full text link
    The PADME experiment, at the Laboratori Nazionali di Frascati (LNF), in Italy, will search for invisible decays of the hypothetical dark photon via the process e+eγAe^+e^-\rightarrow \gamma A', where the AA' escapes detection. The dark photon mass range sensitivity in a first phase will be 1 to 24 MeV. We report here on measurement and simulation studies of the performance of the Small-Angle Calorimeter, a component of PADME's detector dedicated to rejecting 2- and 3-gamma backgrounds. The crucial requirement is a timing resolution of less than 200 ps, which is satisfied by the choice of PbF2_2 crystals and the newly released Hamamatsu R13478UV photomultiplier tubes (PMTs). We find a timing resolution of 81 ps (with double-peak separation resolution of 1.8 ns) and a single-crystal energy resolution of 5.7%/E\sqrt{E} with light yield of 2.07 photo-electrons per MeV, using 100 to 400 MeV electrons at the Beam Test Facility of LNF. We also propose the investigation of a two-PMT solution coupled to a single PbF2_2 crystal for higher-energy applications, which has potentially attractive features.Comment: 12 pages, 19 figures. v2: added section on radiation damage studie

    The Effect of Manual Therapy on Muscle Stiffness in Healthy Individuals

    Get PDF
    The purpose of this study was to evaluate the immediate and delayed changes in muscle stiffness (in a resting and contracted state) related to DN of the gastrocnemius compared to a sham DN condition. To further investigate this relationship, we investigated these changes at the site of the TP, as well as at a standard site (medial head of the gastrocnemius). We hypothesize that gastrocnemius DN reduces muscle stiffness in individuals with TP

    High-resolution tracking in a GEM-Emulsion detector

    Full text link
    SHiP (Search for Hidden Particles) is a beam dump experiment proposed at the CERN SPS aiming at the observation of long lived particles very weakly coupled with ordinary matter mostly produced in the decay of charmed hadrons. The beam dump facility of SHiP is also a copious factory of neutrinos of all three kinds and therefore a dedicated neutrino detector is foreseen in the SHiP apparatus. The neutrino detector exploits the Emulsion Cloud Chamber technique with a modular structure, alternating walls of target units and planes of electronic detectors providing the time stamp to the event. GEM detectors are one of the possible choices for this task. This paper reports the results of the first exposure to a muon beam at CERN of a new hybrid chamber, obtained by coupling a GEM chamber and an emulsion detector. Thanks to the micrometric accuracy of the emulsion detector, the position resolution of the GEM chamber as a function of the particle inclination was evaluated in two configurations, with and without the magnetic fiel

    A 1 m3^3 Gas Time Projection Chamber with Optical Readout for Directional Dark Matter Searches: the CYGNO Experiment

    Full text link
    The aim of the CYGNO project is the construction and operation of a 1~m3^3 gas TPC for directional dark matter searches and coherent neutrino scattering measurements, as a prototype toward the 100-1000~m3^3 (0.15-1.5 tons) CYGNUS network of underground experiments. In such a TPC, electrons produced by dark-matter- or neutrino-induced nuclear recoils will drift toward and will be multiplied by a three-layer GEM structure, and the light produced in the avalanche processes will be readout by a sCMOS camera, providing a 2D image of the event with a resolution of a few hundred micrometers. Photomultipliers will also provide a simultaneous fast readout of the time profile of the light production, giving information about the third coordinate and hence allowing a 3D reconstruction of the event, from which the direction of the nuclear recoil and consequently the direction of the incoming particle can be inferred. Such a detailed reconstruction of the event topology will also allow a pure and efficient signal to background discrimination. These two features are the key to reach and overcome the solar neutrino background that will ultimately limit non-directional dark matter searches.Comment: 5 page, 7 figures, contribution to the Conference Records of 2018 IEEE NSS/MI

    Near-field microwave techniques for micro – and nano - scale characterization in materials science

    Get PDF
    In this paper, the basic principles of Near-Field Microscopy will be reviewed with focus on the micro- and nano-scale resolution configurations for material science measurements. Results on doping profile, dielectric and magnetic properties will be presented, with details on the calibration protocols needed for quantitative estimation of the dielectric constant and of the permeability

    S100B‑p53 disengagement by pentamidine promotes apoptosis and inhibits cellular migration via aquaporin‑4 and metalloproteinase‑2 inhibition in C6 glioma cells

    No full text
    S100 calcium‑binding protein B (S100B) is highly expressed in glioma cells and promotes cancer cell survival via inhibition of the p53 protein. In melanoma cells, this S100B‑p53 interaction is known to be inhibited by pentamidine isethionate, an antiprotozoal agent. Thus, the aim of the present study was to evaluate the effect of pentamidine on rat C6 glioma cell proliferation, migration and apoptosis in vitro. The change in C6 cell proliferation following treatment with pentamidine was determined by performing a 3‑[4,5‑dimethylthiazol‑2‑yl]‑2,5 diphenyltetrazolium bromide‑formazan assay. Significant dose‑dependent decreases in proliferation were observed at pentamidine concentrations of 0.05 μM (58.5±5%; P<0.05), 0.5 μM (40.6±7%; P<0.01) and 5 μM (13±4%; P<0.001) compared with the control (100% viability). Furthermore, treatment with 0.05, 0.5 and 5 μM pentamidine was associated with a significant increase in apoptosis versus the untreated cells, as determined by DNA fragmentation assays, immunofluorescence analysis of C6 chromatin using Hoechst staining, and immunoblot analysis of B‑cell lymphoma‑2 (Bcl‑2)‑associated X protein (100%, P<0.05; 453%, P<0.01; and 1000%, P<0.001, respectively) and Bcl‑2 (‑60%, P<0.001; ‑80.13%, P<0.001; ‑95%, P<0.001, respectively). In addition, the administration of 0.05, 0.5 and 5 μM pentamidine significantly upregulated the protein expression levels of p53 (681±87.5%, P<0.05; 1244±94.3%, P<0.01; and 2244±111%, P<0.001, respectively), and significantly downregulated the expression levels of matrix metalloproteinase‑2 (42±2.3%, P<0.05; 71±2.5%, P<0.01; and 95.8±3.3%, P<0.001, respectively) and aquaporin 4 (38±2.5%, P<0.05; 69±2.6%, P<0.01; and 88±3.0%, P<0.001, respectively), compared with the untreated cells. The wound healing assay demonstrated that cell migration was significantly impaired by treatment with 0.05, 0.5 and 5 μM pentamidine compared with untreated cells (88±4.2%, P<0.05; 64±2%, P<0.01; and 42±3.1%, P<0.001, respectively). Although additional in vivo studies are required to clarify the current in vitro data, the present study indicates that pentamidine and S100B‑p53 inhibitors may represent a novel approach for the treatment of glioma

    Reduced biliverdin reductase-a expression in visceral adipose tissue is associated with adipocyte dysfunction and nafld in human obesity

    Get PDF
    Biliverdin reductase A (BVR-A) is an enzyme involved in the regulation of insulin signalling. Knockout (KO) mice for hepatic BVR-A, on a high-fat diet, develop more severe glucose impairment and hepato-steatosis than the wild type, whereas loss of adipocyte BVR-A is associated with increased visceral adipose tissue (VAT) inflammation and adipocyte size. However, BVR-A expression in human VAT has not been investigated. We evaluated BVR-A mRNA expression levels by real-time PCR in the intra-operative omental biopsy of 38 obese subjects and investigated the association with metabolic impairment, VAT dysfunction, and biopsy-proven non-alcoholic fatty liver disease (NAFLD). Individuals with lower VAT BVR-A mRNA levels had significantly greater VAT IL-8 and Caspase 3 expression than those with higher BVR-A. Lower VAT BVR-A mRNA levels were associated with an increased adipocytes’ size. An association between lower VAT BVR-A expression and higher plasma gamma-glutamyl transpeptidase was also observed. Reduced VAT BVR-A was associated with NAFLD with an odds ratio of 1.38 (95% confidence interval: 1.02–1.9; χ2 test) and with AUROC = 0.89 (p = 0.002, 95% CI = 0.76–1.0). In conclusion, reduced BVR-A expression in omental adipose tissue is associated with VAT dysfunction and NAFLD, suggesting a possible involvement of BVR-A in the regulation of VAT homeostasis in presence of obesity
    corecore