6 research outputs found
Abyssal Slope CUrrents
Realistic computational simulations in different oceanic basins reveal prevalent prograde mean flows (i.e. in the direction of topographic Rossby wave propagation along isobaths; a.k.a. topostrophy) on topographic slopes in the deep ocean, consistent with the barotropic theory of eddy-driven mean flows. Attention is focused on the Western Mediterranean Sea with strong currents and steep topography. These prograde mean currents induce an opposing bottom drag stress and thus a turbulent boundary-layer mean flow in the downhill direction, evidenced by a near-bottom negative mean vertical velocity. The slope-normal profile of diapycnal buoyancy mixing results in down-slope mean advection near the bottom (a tendency to locally increase the mean buoyancy) and up-slope buoyancy mixing (a tendency to decrease buoyancy) with associated buoyancy fluxes across the mean isopycnal surfaces (diapycnal downwelling). In the upper part of the boundary layer and nearby interior, the diapycnal turbulent buoyancy flux divergence reverses sign (diapycnal upwelling), with upward Eulerian mean buoyancy advection across isopycnal surfaces. These near-slope tendencies abate with further distance from the boundary. An along-isobath mean momentum balance shows an advective acceleration and a bottom-drag retardation of the prograde flow. The eddy buoyancy advection is significant near the slope, and the associated eddy potential energy conversion is negative, consistent with mean vertical shear flow generation for the eddies. This cross-isobath flow structure differs from previous proposals, and a new one-dimensional model is constructed for a topostrophic, stratified, slope bottom boundary layer. The broader issue of the return pathways of the global thermohaline circulation remains open, but the abyssal slope region is likely to play a dominant role
Influence du mode d'injection de la eCG/PMSG dans les traitements d'induction de l'ovulation chez la chèvre
National audienc
Birth of live offspring from cultured nuclear transferred embryos in goats
International audienc
The ECORS-Truc Vert’08 nearshore field experiment: Presentation of a three-dimensional morphologic system in a macro-tidal environment during consecutive extreme storm conditions
A large multi-institutional nearshore field experiment was conducted at Truc Vert, on the Atlantic coast of France in early 2008. Truc Vert’08 was designed to measure beach change on a long, sandy stretch of coast without engineering works with emphasis on large winter waves (offshore significant wave height up to 8 m), a three-dimensional morphology, and macro-tidal conditions. Nearshore wave transformation, circulation and bathymetric changes involve coupled processes at many spatial and temporal scales thus implying the need to improve our knowledge for the full spectrum of scales to achieve a comprehensive view of the natural system. This experiment is unique when compared with existing experiments because of the simultaneous investigation of processes at different scales, both spatially (from ripples to sand banks) and temporally (from single swash events to several spring-neap tidal cycles, including a major storm event). The purpose of this paper is to provide background information on the experiment by providing detailed presentation of the instrument layout and snapshots of preliminary results.Hydraulic EngineeringCivil Engineering and Geoscience