80 research outputs found

    The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation

    Get PDF
    Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6 degrees x19.2 degrees (26 mm focal length at 283 mu rad/pixel) to 6.2 degrees x4.6 degrees (110 mm focal length at 67.4 mu rad/pixel). The cameras can resolve (>= 5 pixels) similar to 0.7 mm features at 2 m and similar to 3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648x1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3 degrees total toe-in on a camera plate similar to 2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions

    Ultraviolet and Multiwavelength Variability of the Blazar 3C 279: Evidence for Thermal Emission

    Full text link
    The gamma-ray blazar 3C 279 was monitored on a nearly daily basis with IUE, ROSAT and EGRET for three weeks between December 1992 and January 1993. During this period, the blazar was at a historical minimum at all wavelengths. Here we present the UV data obtained during the above multiwavelength campaign. A maximum UV variation of ~50% is detected, while during the same period the X-ray flux varied by no more than 13%. At the lowest UV flux level the average spectrum in the 1230-2700 A interval is unusually flat for this object (~1). The flattening could represent the lowest energy tail of the inverse Compton component responsible for the X-ray emission, or could be due to the presence of a thermal component at ~20000 K possibly associated with an accretion disk. The presence of an accretion disk in this blazar object, likely observable only in very low states and otherwise hidden by the beamed, variable synchrotron component, would be consistent with the scenario in which the seed photons for the inverse Compton mechanism producing the gamma-rays are external to the relativistic jet. We further discuss the long term correlation of the UV flux with the X-ray and gamma-ray fluxes obtained at various epochs. All UV archival data are included in the analysis. Both the X- and gamma-ray fluxes are generally well correlated with the UV flux, approximately with square root and quadratic dependences, respectively.Comment: 22 pages, Latex, 7 PostScript figures, to appear in The Astrophysical Journa

    The location of Airy-0, the Mars prime meridian reference, from stereo photogrammetric processing of THEMIS IR imaging and digital elevation data

    Get PDF
    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses in the year 2000 tied Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to update the location of Airy-0. Based upon this tie and radiometric tracking of landers/rovers from Earth, new expressions for the Mars spin axis direction, spin rate, and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Since the Mars Global Surveyor mission and Mars Orbiter Laser Altimeter global digital terrain model were completed some time ago, a more exhaustive study has been performed to determine the accuracy of the Airy-0 location and orientation of Mars at the standard epoch. Thermal Emission Imaging System (THEMIS) IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be about 0.001° east of its predicted location using the currently defined International Astronomical Union (IAU) prime meridian location. Information on this new location and how it was derived will be provided to the NASA Mars Exploration Program Geodesy and Cartography Working Group for their assessment. This NASA group will make a recommendation to the IAU Working Group on Cartographic Coordinates and Rotational Elements to update the expression for the Mars spin axis direction, spin rate, and prime meridian location

    Coupled Contagion Dynamics of Fear and Disease: Mathematical and Computational Explorations

    Get PDF
    Background: In classical mathematical epidemiology, individuals do not adapt their contact behavior during epidemics. They do not endogenously engage, for example, in social distancing based on fear. Yet, adaptive behavior is welldocumented in true epidemics. We explore the effect of including such behavior in models of epidemic dynamics. Methodology/Principal Findings: Using both nonlinear dynamical systems and agent-based computation, we model two interacting contagion processes: one of disease and one of fear of the disease. Individuals can ‘‘contract’ ’ fear through contact with individuals who are infected with the disease (the sick), infected with fear only (the scared), and infected with both fear and disease (the sick and scared). Scared individuals–whether sick or not–may remove themselves from circulation with some probability, which affects the contact dynamic, and thus the disease epidemic proper. If we allow individuals to recover from fear and return to circulation, the coupled dynamics become quite rich, and can include multiple waves of infection. We also study flight as a behavioral response. Conclusions/Significance: In a spatially extended setting, even relatively small levels of fear-inspired flight can have a dramatic impact on spatio-temporal epidemic dynamics. Self-isolation and spatial flight are only two of many possible actions that fear-infected individuals may take. Our main point is that behavioral adaptation of some sort must b

    Certain subclasses of multivalent functions defined by new multiplier transformations

    Full text link
    In the present paper the new multiplier transformations \mathrm{{\mathcal{J}% }}_{p}^{\delta }(\lambda ,\mu ,l) (\delta ,l\geq 0,\;\lambda \geq \mu \geq 0;\;p\in \mathrm{% }%\mathbb{N} )} of multivalent functions is defined. Making use of the operator Jpδ(λ,μ,l),\mathrm{% {\mathcal{J}}}_{p}^{\delta }(\lambda ,\mu ,l), two new subclasses Pλ,μ,lδ(A,B;σ,p)\mathcal{% P}_{\lambda ,\mu ,l}^{\delta }(A,B;\sigma ,p) and P~λ,μ,lδ(A,B;σ,p)\widetilde{\mathcal{P}}% _{\lambda ,\mu ,l}^{\delta }(A,B;\sigma ,p)\textbf{\ }of multivalent analytic functions are introduced and investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationships, neighborhoods, partial sums, some applications of fractional calculus and quasi-convolution properties of functions belonging to each of these subclasses Pλ,μ,lδ(A,B;σ,p)\mathcal{P}_{\lambda ,\mu ,l}^{\delta }(A,B;\sigma ,p) and P~λ,μ,lδ(A,B;σ,p)\widetilde{\mathcal{P}}_{\lambda ,\mu ,l}^{\delta }(A,B;\sigma ,p) are investigated. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out

    Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager

    Get PDF
    The NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm (25.5∘×19.1∘ FOV) to 110 mm (6.2∘×4.2∘ FOV) and will acquire data at pixel scales of 148-540 μm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover’s mast with a stereo baseline of 24.3±0.1 cm and a toe-in angle of 1.17±0.03∘ (per camera). Each camera uses a Kodak KAI-2020 CCD with 1600×1200 active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors’ Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26thth and May 9thth, 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be 0.2 design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples

    Multiple-wavelength sensing of Jupiter during the Juno mission's first perijove passage

    Get PDF
    We compare Jupiter observations made around 27 August 2016 by Juno's JunoCam, Jovian Infrared Auroral Mapper (JIRAM), MicroWave Radiometer (MWR) instruments, and NASA's Infrared Telescope Facility. Visibly dark regions are highly correlated with bright areas at 5 µm, a wavelength sensitive to gaseous NH3 gas and particulate opacity at p ≤5 bars. A general correlation between 5-µm and microwave radiances arises from a similar dependence on NH3 opacity. Significant exceptions are present and probably arise from additional particulate opacity at 5 µm. JIRAM spectroscopy and the MWR derive consistent 5-bar NH3 abundances that are within the lower bounds of Galileo measurement uncertainties. Vigorous upward vertical transport near the equator is likely responsible for high NH3 abundances and with enhanced abundances of some disequilibrium species used as indirect indicators of vertical motions
    • …
    corecore