14 research outputs found

    Thermal, Avionics, and Power Considerations for Designing a Nuclear Thermal Propulsion Flight Demonstrator

    Get PDF
    As part of the Appropriations Bill passed by the US Congress in February 2019, NASA was instructed to develop a nuclear thermal propulsion (NTP) flight demonstrator by 2024. [4] In response to this directive, the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) was tasked with beginning concept studies for the flight demonstration (FD) mission. During the NTP study formulation, two philoso- phies emerged with regards to FD concept design. The first, Flight Demo 1 (FD1), strictly observes the 2024 schedule requirement at the expense of lower engine performance than expected of theoretical NTP engines. The second concept, Flight Demo 2 (FD2), relaxes the schedule requirement to allow for higher engine performance and more traceability to future operational systems. Both the FD1 and FD2 concepts present considerable challenges for subsystem design, specifically in the areas of thermal control, avionics, and power. To guard against undesired graveyard orbits, a requirement to keep the NTP engine and the reaction control system (RCS) separate was put in place. As a result of this requirement, the avionics subsystem must provide separate command and data handling (CDH) and instrumentation for each propulsion system. In-space instrumentation and monitoring of a NTP system has never been done before, necessitating the development of novel strategies and unique hardware. The heating rates produced by the NTP engine are extremely high, leading to difficulties with thermal control. The FD1 concept utilizes high-pressure gaseous hydrogen (GH2), which is largely insensitive to temperature fluctuations. The FD2 concept, however, utilizes cryogenic liquid hydrogen (LH2) which must be kept stable near 20 Kelvin. A high-performance thermal control system (TCS) will be required to ensure all components and subsystems are maintained within their operational temperature ranges. This paper will highlight the thermal, avionics, and power solutions required for the full scope of challenges for a NTP flight demonstrator

    Orbit Selection for the Proposed Lynx Observatory Mission

    Get PDF
    The Advanced Concepts Office design team performed several analyses and trades in support of orbit selection for the proposed Lynx mission, an x-ray observatory being submitted to the Astro2020 Decadal Survey. Though the descriptions in this Technical Memorandum (TM) focus on the Lynx mission, the approach and process for selecting the final orbit is applicable to a variety of proposed science and exploration missions. To select the best orbit for the Lynx science, mission designers assembled a team of subsystem and discipline experts, in addition to mission analysts, to evaluate several candidate orbits. These discipline experts included members of the science and instrument team, power and avionics, thermal, propulsion, and environments. The goal was to clearly show the benefits and weaknesses of each orbit in the trade space and provide sound justification for the final selection. Discipline experts conducted trades and evaluated the results using a variety of methods including engineering judgement, rough estimates, and detailed calculations, and rolled the results into a final grade using a weighted grading method. The orbit options could then be ranked. The principal investigator (PI) for the mission, along with the science team, was given the task of final orbit selection. The result of the trades indicated that a halo orbit about the second Sun-Earth Lagrange point (SE-L2), similar to the planned orbit for the James Webb Space Telescope (JWST), was the best choice for the Lynx mission. Details of how the team arrived at this selection are below

    Additive Manufacturing: An Enabling Technology for the MoonBEAM 6U CubeSat Missions

    Get PDF
    The Advanced Concepts Office at the NASA Marshall Space Flight Center completed a mission concept study for the Moon Burst Energetics All-sky Monitor (MoonBEAM). The goal of the concept study was to show the enabling aspects that additive manufacturing can provide to CubeSats. In addition to using the additively manufactured tanks as part of the spacecraft structure, the main propulsion system uses a green propellant, which is denser than hydrazine. Momentum unloading is achieved with electric microthrusters, eliminating much of the propellant plumbing. The science mission, requirements, and spacecraft design are described

    Wide Field X-Ray Telescope Mission Concept Study Results

    Get PDF
    The Wide Field X-Ray Telescope (WFXT) is an astrophysics mission concept for detecting and studying extra-galactic x-ray sources, including active galactic nuclei and clusters of galaxies, in an effort to further understand cosmic evolution and structure. This Technical Memorandum details the results of a mission concept study completed by the Advanced Concepts Office at NASA Marshall Space Flight Center in 2012. The design team analyzed the mission and instrument requirements, and designed a spacecraft that enables the WFXT mission while using high heritage components. Design work included selecting components and sizing subsystems for power, avionics, guidance, navigation and control, propulsion, structures, command and data handling, communications, and thermal control

    Xenia Mission: Spacecraft Design Concept

    Get PDF
    The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution

    Cryogenic Propellant Storage and Transfer Technology Demonstration: Prephase A Government Point-of-Departure Concept Study

    Get PDF
    The primary purpose of this study was to define a point-of-departure prephase A mission concept for the cryogenic propellant storage and transfer technology demonstration mission to be conducted by the NASA Office of the Chief Technologist (OCT). The mission concept includes identification of the cryogenic propellant management technologies to be demonstrated, definition of a representative mission timeline, and definition of a viable flight system design concept. The resulting mission concept will serve as a point of departure for evaluating alternative mission concepts and synthesizing the results of industry- defined mission concepts developed under the OCT contracted studie

    Lynx Mission Concept Status

    Get PDF
    Lynx is a concept under study for prioritization in the 2020 Astrophysics Decadal Survey. Providing orders of magnitude increase in sensitivity over Chandra, Lynx will examine the first black holes and their galaxies, map the large-scale structure and galactic halos, and shed new light on the environments of young stars and their planetary systems. In order to meet the Lynx science goals, the telescope consists of a high-angular resolution optical assembly complemented by an instrument suite that may include a High Definition X-ray Imager, X-ray Microcalorimeter and an X-ray Grating Spectrometer. The telescope is integrated onto the spacecraft to form a comprehensive observatory concept. Progress on the formulation of the Lynx telescope and observatory configuration is reported in this paper
    corecore