3,919 research outputs found

    A Model for Judicial Leadership: Community Responses to Juvenile Substance Abuse

    Get PDF
    Outlines the Reclaiming Futures initiative, which brings juvenile courts and systems of care together under judges' leadership in a team effort toward systemic change. Offers lessons learned, guidance, and recommendations for starting similar projects

    Innovative Second-Generation Wavelets Construction With Recurrent Neural Networks for Solar Radiation Forecasting

    Full text link
    Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic modules. This paper deals with the problem of solar radiation prediction based on observed meteorological data. A 2-day forecast is obtained by using novel wavelet recurrent neural networks (WRNNs). In fact, these WRNNS are used to exploit the correlation between solar radiation and timescale-related variations of wind speed, humidity, and temperature. The input to the selected WRNN is provided by timescale-related bands of wavelet coefficients obtained from meteorological time series. The experimental setup available at the University of Catania, Italy, provided this information. The novelty of this approach is that the proposed WRNN performs the prediction in the wavelet domain and, in addition, also performs the inverse wavelet transform, giving the predicted signal as output. The obtained simulation results show a very low root-mean-square error compared to the results of the solar radiation prediction approaches obtained by hybrid neural networks reported in the recent literature

    Short-Term Memory Improvement After Simultaneous Interpretation Training

    Get PDF
    open4siSimultaneous interpretation (SI) is a cognitively demanding process that has been associated with enhanced memory and executive functions. It is unclear, however, if the previously evidenced interpreter advantages are developed through training and/or experience with SI or rather represent inherent characteristics that allow success in the field. The present study aimed to disentangle these possibilities through a longitudinal examination of students earning a Master of Conference Interpreting and two control populations. The students were tested at the beginning and end of their programs on measures of memory and executive functioning that have previously demonstrated an interpreter advantage. The results revealed no inherent advantage among the students of interpretation. However, an SI training-specific advantage was revealed in verbal short-term memory; the students of interpretation, but not the two control groups, showed a gain between the testing sessions. This controlled longitudinal study demonstrates that training in simultaneous interpretation is associated with cognitive changes.openBabcock, Laura; Capizzi, Mariagrazia; Arbula, Sandra; Vallesi, AntoninoBabcock, Laura; Capizzi, Mariagrazia; Arbula, Sandra; Vallesi, Antonin

    Dissociating Explicit and Implicit Timing in Parkinson\u2019s Disease Patients: Evidence from Bisection and Foreperiod Tasks

    Get PDF
    A consistent body of literature reported that Parkinson\u2019s disease (PD) is marked by severe deficits in temporal processing. However, the exact nature of timing problems in PD patients is still elusive. In particular, what remains unclear is whether the temporal dysfunction observed in PD patients regards explicit and/or implicit timing. Explicit timing tasks require participants to attend to the duration of the stimulus, whereas in implicit timing tasks no explicit instruction to process time is received but time still affects performance. In the present study, we investigated temporal ability in PD by comparing 20 PD participants and 20 control participants in both explicit and implicit timing tasks. Specifically, we used a time bisection task to investigate explicit timing and a foreperiod task for implicit timing. Moreover, this is the first study investigating sequential effects in PD participants. Results showed preserved temporal ability in PD participants in the implicit timing task only (i.e., normal foreperiod and sequential effects). By contrast, PD participants failed in the explicit timing task as they displayed shorter perceived durations and higher variability compared to controls. Overall, the dissociation reported here supports the idea that timing can be differentiated according to whether it is explicitly or implicitly processed, and that PD participants are selectively impaired in the explicit processing of time

    Practical Design of Generalized Likelihood Ratio Control Charts for Autocorrelated Data

    Get PDF
    Control charts based on Generalized Likelihood Ratio (GLR) tests are attractive from both a theoretical and practical point of view. In particular, in the case of an autocorrelated process, the GLR test uses the information contained in the time-varying response after a change and, as shown by Apley and Shi, is able to outperfom traditional control charts applied to residuals. In addition, a GLR chart provides estimates of the magnitude and the time of occurrence of the change. In this paper, we present a practical approach to the implementation of GLR charts for monitoring an autoregressive and moving average process assuming that only a Phase I sample is available. The proposed approach, based on automatic time series identification, estimates the GLR control limits via stochastic approximation using bootstrap resampling. Thus, it is able to take into account the uncertainty about the underlying model. A Monte Carlo study shows that our methodology can be used to design in a semi-automatic fashion a GLR chart with a prescribed rate of false alarms when as few as 50 Phase I observations are available. A real example is used to illustrate the designing procedure

    Evaluation of the Run-Length Distribution for a Combined Shewhart-EWMA Control Chart

    Get PDF
    A simple algorithm is introduced for computing the run length distribution of a monitoring scheme combining a Shewhart chart with an Exponentially Weighted Moving Average control chart. The algorithm is based on the numerical approximation of the integral equations and integral recurrence relations related to the run-length distribution. In particular, a modified Clenshaw-Curtis quadrature rule is applied for handling discontinuities in the integrand function due to the simultaneous use of the two control schemes. The proposed algorithm, implemented in R and publicy available, compares favourably with the Markov chain approach originally used to approximate the run length properties of the combined Shewhart-EWMA

    Electromagnetic and ultrasonic investigations on a Roman marble slab

    Get PDF
    The archaeological museum of Rome asked our group about the physical consistency of a marble slab (second to third century AD) that recently fell during its travel as part of an exhibition. We decided to use different methodologies to investigate the slab: namely a pacometer (Protovale Elcometer) to individuate the internal coupling pins, and ground-penetrating radar (GPR) (2000 MHz) and ultrasonic (55 kHz) tomographic high-density surveys to investigate the internal extension of all the visible fractures and to search for the hidden ones. For the ultrasonic data, tests were carried out to optimize the inversion parameters, in particular the cell dimensions. The choice of cell size for the inversion process must take into account the size of the acquisition grid and the ray number acquired. We proposed to calculate a minimum Fresnel’s radius using the sampling frequency instead of that of the probes. For every methodology used, the quality of the acquired data was relatively high. This was then processed and compared to provide information that was useful for some of the insurance problems of the museum. Later on, the data was processed in depth to see how to improve the data processing and interpretation. Finally, the results of this in-depth study were exposed in detail. Ultrasonic and GPR tomographies show a strong correlation, and in particular, the inhomogeneous areas are located in correspondence to the slab injuries

    How Life Experience Shapes Cognitive Control Strategies: The Case of Air Traffic Control Training

    Get PDF
    Although human flexible behavior relies on cognitive control, it would be implausible to assume that there is only one, general mode of cognitive control strategy adopted by all individuals. For instance, different reliance on proactive versus reactive control strategies could explain inter-individual variability. In particular, specific life experiences, like a highly demanding training for future Air Traffic Controllers (ATCs), could modulate cognitive control functions. A group of ATC trainees and a matched group of university students were tested longitudinally on task-switching and Stroop paradigms that allowed us to measure indices of cognitive control. The results showed that the ATCs, with respect to the control group, had substantially smaller mixing costs during long cue-target intervals (CTI) and a reduced Stroop interference effect. However, this advantage was present also prior to the training phase. Being more capable in managing multiple task sets and less distracted by interfering events suggests a more efficient selection and maintenance of task relevant information as an inherent characteristic of the ATC group, associated with proactive control. Critically, the training that the ATCs underwent improved their accuracy in general and reduced response time switching costs during short CTIs only. These results indicate a training-induced change in reactive control, which is described as a transient process in charge of stimulus-driven task detection and resolution. This experience-based enhancement of reactive control strategy denotes how cognitive control and executive functions in general can be shaped by real-life training and underlines the importance of experience in explaining inter-individual variability in cognitive functioning
    corecore