89 research outputs found

    Interplay between heartbeat oscillations and wind outflow in microquasar IGR J17091-3624

    Get PDF
    During the bright outburst in 2011, the black hole candidate IGR J17091-3624 exhibited strong quasi-periodic flare-like events (on timescales of tens of seconds) in some characteristic states, the so-called heartbeat state. From the theoretical point of view, these oscillations may be modeled by the process of accretion disk instability, driven by the dominant radiation pressure and enhanced heating of the plasma. Although the mean accretion rate in this source is probably below the Eddington limit, the oscillations will still have large amplitudes. As the observations show, the source can exhibit strong wind outflow during the soft state. This wind may help to partially or even completely stabilize the heartbeat. Using our hydrodynamical code GLADIS, we modeled the evolution of an accretion disk responsible for X-ray emission of the source. We accounted for a variable wind outflow from the disk surface. We examined the data archive from the Chandra and XMM-Newton satellites to find the observed limitations on the wind physical properties, such as its velocity and ionization state. We also investigated the long-term evolution of this source, which lasted over about 600 days of observations, using the data collected by the Swift and RXTE satellites. During this long period, the oscillations pattern and the observable wind properties changed systematically. We found that this source probably exhibits observable outbursts of appropriate timescales and amplitudes as a result of the disk instability. Our model requires a substantial wind component to explain the proper variability pattern, and even complete suppression of flares in some states. The wind mass-loss rate extracted from the data agrees quantitatively well with our scenario.Comment: 12 pages, 8 figures. Published in Astronomy and Astrophysic

    Non-linear variability in microquasars in relation with the winds from their accretion disks

    Get PDF
    The microquasar IGR J17091-3624, which is the recently discovered analogue of the well known source GRS 1915+105, exhibits quasi-periodic outbursts, with a period of 5-70 seconds, and regular amplitudes, referred to as "heartbeat state". We argue that these states are plausibly explained by accretion disk instability, driven by the dominant radiation pressure. Using our GLobal Accretion DIsk Simulation hydrodynamical code, we model these outbursts quantitatively. We also find a correlation between the presence of massive outflows launched from the accretion disk and the stabilization of its oscillations. We verify the theoretical predictions with the available timing and spectral observations. Furthermore, we postulate that the underlying non-linear differential equations that govern the evolution of an accretion disk are responsible for the variability pattern of several other microquasars, including XTE J1550-564, GX 339-4, and GRO J1655-40. This is based on the signatures of deterministic chaos in the observed lightcurves of these sources, which we found using the recurrence analysis method. We discuss these results in the frame of the accretion disk instability model.Comment: 6 pages, 3 figures; to be published in the conference proceedings of "High Energy Phenomena in Relativistic Outflows V" (La Plata, October 2015

    Energy scaling of the "heartbeat" pulse width of GRS 1915+105, IGR J17091-3624, and MXB 1730-335 from Rossi-XTE observations

    Get PDF
    We investigate some key aspects of the "heartbeat" variability consisting of series of bursts with a slow rise and a fast decay, thus far detected only in GRS 1915+105, IGR J17091-3624, and MXB 1730-335. A previous analysis based on BeppoSAX data of GRS 1915+105 revealed a hard-X delay (HXD), that is a lag of the burst rise at higher energies with respect to lower ones; this leads to narrower pulse widths, w, at higher energies. We here use some light curves of Rossi-XTE observations of GRS 1915+105 for a deeper analysis of this effect and search for its presence in those extracted from some IGR J17091-3624 and MXB 1730-335 observations performed with the same satellite. Our results show that, at variance with GRS 1915+105, no HXD is evident in the light curves of MXB 1730-335 and only a marginal HXD may be argued for IGR J17091-3624. For GRS 1915+105 we find a decreasing trend of the pulse width with energy following a power law w = A ⋅ E ˆ (-s) with an index s ≈ 0.8. Furthermore, we confirm the increase of the HXD with the recurrence time T_rec of the bursts in each series that was already found in previous works using BeppoSAX data. Based on a spectral analysis of these three sources we conclude that the differences highlighted in the properties of the "heartbeat" variability are probably related to the different accreting compact object and the eventual presence of a corona in these binary interacting systems

    Science case study and scientific simulations for the enhanced X-ray Timing Polarimetry mission, eXTP

    Get PDF
    The X-ray astronomy mission eXTP (enhanced X-ray Timing Polarimetry) is designed to study matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state (EoS) of matter at supranuclear density, the physics in extremely strong magnetic fields, the study of accretion in strong-field gravity (SFG) regime. Primary targets include isolated and binary neutron stars, strong magneticfield systems like magnetars, and stellar-mass and supermassive black holes. In this paper we report about key observations and simulations with eXTP on the primary objectives involving accretion under SFG regimes and determination of NS-Eo

    The X-ray Polarization Probe mission concept

    Full text link
    The X-ray Polarization Probe (XPP) is a second generation X-ray polarimeter following up on the Imaging X-ray Polarimetry Explorer (IXPE). The XPP will offer true broadband polarimetery over the wide 0.2-60 keV bandpass in addition to imaging polarimetry from 2-8 keV. The extended energy bandpass and improvements in sensitivity will enable the simultaneous measurement of the polarization of several emission components. These measurements will give qualitatively new information about how compact objects work, and will probe fundamental physics, i.e. strong-field quantum electrodynamics and strong gravity.Comment: submitted to Astrophysics Decadal Survey as a State of the Profession white pape

    X-ray polarimetry reveals the magnetic field topology on sub-parsec scales in Tycho's supernova remnant

    Full text link
    Supernova remnants are commonly considered to produce most of the Galactic cosmic rays via diffusive shock acceleration. However, many questions about the physical conditions at shock fronts, such as the magnetic-field morphology close to the particle acceleration sites, remain open. Here we report the detection of a localized polarization signal from some synchrotron X-ray emitting regions of Tycho's supernova remnant made by the Imaging X-ray Polarimetry Explorer. The derived polarization degree of the X-ray synchrotron emission is 9+/-2% averaged over the whole remnant, and 12+/-2% at the rim, higher than the 7-8% polarization value observed in the radio band. In the west region the polarization degree is 23+/-4%. The X-ray polarization degree in Tycho is higher than for Cassiopeia A, suggesting a more ordered magnetic-field or a larger maximum turbulence scale. The measured tangential polarization direction corresponds to a radial magnetic field, and is consistent with that observed in the radio band. These results are compatible with the expectation of turbulence produced by an anisotropic cascade of a radial magnetic-field near the shock, where we derive a magnetic-field amplification factor of 3.4+/-0.3. The fact that this value is significantly smaller than those expected from acceleration models is indicative of highly anisotropic magnetic-field turbulence, or that the emitting electrons either favor regions of lower turbulence, or accumulate close to where the magnetic-field orientation is preferentially radially oriented due to hydrodynamical instabilities.Comment: 31 pages, 7 figures, 3 tables. Accepted for publication in ApJ. Revised versio

    Observations of 4U 1626-67 with the Imaging X-ray Polarimetry Explorer

    Get PDF
    We present measurements of the polarization of X-rays in the 2-8 keV band from the pulsar in the ultracompact low mass X-ray binary 4U1626-67 using data from the Imaging X-ray Polarimetry Explorer (IXPE). The 7.66 s pulsations were clearly detected throughout the IXPE observations as well as in the NICER soft X-ray observations, which we use as the basis for our timing analysis and to constrain the spectral shape over 0.4-10 keV energy band. Chandra HETGS high-resolution X-ray spectra were also obtained near the times of the IXPE observations for firm spectral modeling. We find an upper limit on the pulse-averaged linear polarization of <4% (at 95% confidence). Similarly, there was no significant detection of polarized flux in pulse phase intervals when subdividing the bandpass by energy. However, spectropolarimetric modeling over the full bandpass in pulse phase intervals provide a marginal detection of polarization of the power-law spectral component at the 4.8 +/- 2.3% level (90% confidence). We discuss the implications concerning the accretion geometry onto the pulsar, favoring two-component models of the pulsed emission.Comment: 19 pages, 7 figures, 7 tables; accepted for publication in the Astrophysical Journa
    corecore