142 research outputs found

    Applications of Nash’s Theorem to Cosmology

    Get PDF

    On the Nature of the Cosmological Constant Problem

    Full text link
    General relativity postulates the Minkowski space-time to be the standard flat geometry against which we compare all curved space-times and the gravitational ground state where particles, quantum fields and their vacuum states are primarily conceived. On the other hand, experimental evidences show that there exists a non-zero cosmological constant, which implies in a deSitter space-time, not compatible with the assumed Minkowski structure. Such inconsistency is shown to be a consequence of the lack of a application independent curvature standard in Riemann's geometry, leading eventually to the cosmological constant problem in general relativity. We show how the curvature standard in Riemann's geometry can be fixed by Nash's theorem on locally embedded Riemannian geometries, which imply in the existence of extra dimensions. The resulting gravitational theory is more general than general relativity, similar to brane-world gravity, but where the propagation of the gravitational field along the extra dimensions is a mathematical necessity, rather than being a a postulate. After a brief introduction to Nash's theorem, we show that the vacuum energy density must remain confined to four-dimensional space-times, but the cosmological constant resulting from the contracted Bianchi identity is a gravitational contribution which propagates in the extra dimensions. Therefore, the comparison between the vacuum energy and the cosmological constant in general relativity ceases to be. Instead, the geometrical fix provided by Nash's theorem suggests that the vacuum energy density contributes to the perturbations of the gravitational field.Comment: LaTex, 5 pages no figutres. Correction on author lis

    Evidence of biomass smoke exposure as a causative factor for the development of COPD

    Full text link
    © 2017 by the authors. Chronic obstructive pulmonary disease (COPD) is a progressive disease of the lungs characterised by chronic inflammation, obstruction of airways, and destruction of the parenchyma (emphysema). These changes gradually impair lung function and prevent normal breathing. In 2002, COPD was the fifth leading cause of death, and is estimated by theWorld Health Organisation (WHO) to become the third by 2020. Cigarette smokers are thought to be the most at risk of developing COPD. However, recent studies have shown that people with life-long exposure to biomass smoke are also at high risk of developing COPD. Most common in developing countries, biomass fuels such as wood and coal are used for cooking and heating indoors on a daily basis. Women and children have the highest amounts of exposures and are therefore more likely to develop the disease. Despite epidemiological studies providing evidence of the causative relationship between biomass smoke and COPD, there are still limited mechanistic studies on how biomass smoke causes, and contributes to the progression of COPD. This review will focus upon why biomass fuels are used, and their relationship to COPD. It will also suggest methodological approaches to model biomass exposure in vitro and in vivo

    Ensino de Ciências e Matemática: elementos didáticos para teoria e experimentação

    Get PDF
    O livro Ensino de Ciências e Matemática — elementos didáticos para teoria e experimentação visa ser um referencial para professores e estudantes destas duas áreas do conhecimento pautado na ideia da busca de novas práticas pedagógicas para o desenvolvimento de competências por meio da aprendizagem dialógica, cuja base é o correto trabalho da teoria e da experimentação — elementos norteadores do pensamento científico. Seu conteúdo é resultante de notas de aula da Especialização em Ensino de Ciências e Matemática ofertada por docentes da Universidade Federal da Integração Latino-Americana (UNILA) como curso de formação continuada (Comfor/MEC) para professores da educação básica no Oeste do Paraná

    Perturbations of Dark Matter Gravity

    Full text link
    Until recently the study of the gravitational field of dark matter was primarily concerned with its local effects on the motion of stars in galaxies and galaxy clusters. On the other hand, the WMAP experiment has shown that the gravitational field produced by dark matter amplifies the higher acoustic modes of the CMBR power spectrum, more intensely than the gravitational field of baryons. Such a wide range of experimental evidences from cosmology to local gravity suggests the necessity of a comprehensive analysis of the dark matter gravitational field per se, regardless of any other attributes that dark matter may eventually possess. In this paper we introduce and apply Nash's theory of perturbative geometry to the study of the dark matter gravitational field alone, in a higher-dimensional framework. It is shown that the dark matter gravitational perturbations in the early universe can be explained by the extrinsic curvature of the standard cosmology. Together with the estimated presence of massive neutrinos, such geometric perturbation is compatible not only with the observed power spectrum in the WMAP experiment but also with the most recent data on the accelerated expansion of the universe. It is possible that the same structure formation exists locally, such as in the cases of young galaxies or in cluster collisions. In most other cases it seems to have ceased when the extrinsic curvature becomes negligible, leading to Einstein's equations in four dimensions. The slow motion of stars in galaxies and the motion of plasma substructures in nearly colliding clusters are calculated with the geodesic equation for a slowly moving object in a gravitational field of arbitrary strength.Comment: 10 pages, 5 figure

    The Deformable Universe

    Full text link
    The concept of smooth deformations of a Riemannian manifolds, recently evidenced by the solution of the Poincar\'e conjecture, is applied to Einstein's gravitational theory and in particular to the standard FLRW cosmology. We present a brief review of the deformation of Riemannian geometry, showing how such deformations can be derived from the Einstein-Hilbert dynamical principle. We show that such deformations of space-times of general relativity produce observable effects that can be measured by four-dimensional observers. In the case of the FLRW cosmology, one such observable effect is shown to be consistent with the accelerated expansion of the universe.Comment: 20 pages, LaTeX, 3 figure
    corecore