8 research outputs found

    Longevity of Crown Margin Repairs Using Glass Ionomer Cement: A Retrospective Study

    Get PDF
    Objective: The objective of this study was to determine the survival time of crown margin repairs (CMRs) with glass ionomer and resin-modified glass ionomer cements on permanent teeth using electronic dental record (EDR) data. Methods: We queried a database of EDR (axiUm; Exan Group, Coquitlam, BC, Canada) in the Indiana University School of Dentistry (IUSD), Indianapolis, IN, USA, for records of patients who underwent CMRs of permanent teeth at the Graduate Operative Dentistry Clinic. Two examiners developed guidelines for reviewing the records and manually reviewed the clinical notes of patient records to confirm for CMRs. Only records that were confirmed with the presence of CMRs were retained in the final dataset for survival analysis. Survival time was calculated by Kaplan-Meier statistics, and a Cox proportional hazards model was performed to assess the influence of age, gender, and tooth type on survival time (a<0.05). Results: A total of 214 teeth (115 patients) with CMR were evaluated. Patient average age was 69.4 ± 11.7 years old. Posterior teeth accounted for 78.5% (n=168) of teeth treated. CMRs using glass ionomer cements had a 5-year survival rate of 62.9% and an annual failure rate (AFR) of 8.9%. Cox proportional-hazards model revealed that none of the factors examined (age, gender, tooth type) affected time to failure. Conclusion: The results indicate the potential of CMRs for extending the functional life of crowns with defective margins, thus reducing provider and patient burden of replacing an indirect restoration. We recommend future studies with a larger population who received CMR to extend the generalizability of our findings and to determine the influence of factors such as caries risk and severity of defects on survival time

    A SEPT1-based scaffold is required for Golgi integrity and function

    Get PDF
    Compartmentalization of membrane transport and signaling processes is of pivotal importance to eukaryotic cell function. While plasma membrane compartmentalization and dynamics are well known to depend on the scaffolding function of septin GTPases, the roles of septins at intracellular membranes have remained largely elusive. Here, we show that the structural and functional integrity of the Golgi depends on its association with a septin 1 (SEPT1)-based scaffold, which promotes local microtubule nucleation and positioning of the Golgi. SEPT1 function depends on the Golgi matrix protein GM130 (also known as GOLGA2) and on centrosomal proteins, including CEP170 and components of γ-tubulin ring complex (γ-Turc), to facilitate the perinuclear concentration of Golgi membranes. Accordingly, SEPT1 depletion triggers a massive fragmentation of the Golgi ribbon, thereby compromising anterograde membrane traffic at the level of the Golgi

    Chondropenia: current concept review

    No full text
    corecore