101 research outputs found

    Disruption of muscle architecture and myocardial degeneration in mice lacking desmin.

    Get PDF
    Desmin, the muscle specific intermediate filament (IF) protein encoded by a single gene, is expressed in all muscle tissues. In mature striated muscle, desmin IFs surround the Z-discs, interlink them together and integrate the contractile apparatus with the sarcolemma and the nucleus. To investigate the function of desmin in all three muscle types in vivo, we generated desmin null mice through homologous recombination. Surprisingly, desmin null mice are viable and fertile. However, these mice demonstrated a multisystem disorder involving cardiac, skeletal, and smooth muscle. Histological and electron microscopic analysis in both heart and skeletal muscle tissues revealed severe disruption of muscle architecture and degeneration. Structural abnormalities included loss of lateral alignment of myofibrils and abnormal mitochondrial organization. The consequences of these abnormalities were most severe in the heart, which exhibited progressive degeneration and necrosis of the myocardium accompanied by extensive calcification. Abnormalities of smooth muscle included hypoplasia and degeneration. The present data demonstrate the essential role of desmin in the maintenance of myofibril, myofiber, and whole muscle tissue structural and functional integrity, and show that the absence of desmin leads to muscle degeneration

    Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse

    Get PDF
    Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6–8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle

    The Myosin Va Head Domain Binds to the Neurofilament-L Rod and Modulates Endoplasmic Reticulum (ER) Content and Distribution within Axons

    Get PDF
    The neurofilament light subunit (NF-L) binds to myosin Va (Myo Va) in neurons but the sites of interaction and functional significance are not clear. We show by deletion analysis that motor domain of Myo Va binds to the NF-L rod domain that forms the NF backbone. Loss of NF-L and Myo Va binding from axons significantly reduces the axonal content of ER, and redistributes ER to the periphery of axon. Our data are consistent with a novel function for NFs as a scaffold in axons for maintaining the content and proper distribution of vesicular organelles, mediated in part by Myo Va. Based on observations that the Myo Va motor domain binds to intermediate filament (IF) proteins of several classes, Myo Va interactions with IFs may serve similar roles in organizing organelle topography in different cell types

    Cell proliferation-associated expression of a recently evolved isozyme of triosephosphate isomerase

    Full text link
    An electrophoretically unique, thermolabile isozyme of triosephosphate isomerase (TPI; EC 5.3.1.1) accounts for 10–30% of the enzymatic activity in a range of mitotically active human cells and tissues. This type 2 form (subunit) of human TPI appears in two isozymes, an anodally migrating, relative to the constitutive TPI-1/1 homodimer, TPI-2/2 homodimer and the TPI-1/2 heterodimer with an intermediate mobility. Human cell types expressing the induced isozyme, which is the product of the same structural locus as the constitutive isozyme, include mitogen-stimulated lymphocytes, virally transformed B-lymphoblastoid cells, leukemia-derived T-lymphoblastoid cells, HeLa cells, both normal and transformed fibroblasts, and placental tissue. Extracts of nondividing or terminally differentiated human cells/tissues, such as erythrocytes, striated muscle, peripheral lymphocytes, and platelets, contain high levels of the constitutive TPI-1/1 isozyme but little or undetectable levels of the TPI-1/2 or TPI-2/2 isozyme. The cell division-associated TPI-1/2 and -2/2 isozymes are distinct in electrophoretic mobility from the deamidated forms of the constitutive isozyme. Extracts of dividing gorilla fibroblasts display an isozyme pattern identical to that of proliferating human cells, but various proliferating cells derived from the African green monkey, rabbit, and chicken express only the constitutive isozyme. Thus, expression of the cell division-associated isozyme of TPI is restricted to the hominoids, suggesting a recently evolved modification mechanism which is specifically activated in proliferating cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44152/1/10528_2004_Article_BF00504324.pd

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease
    corecore