50 research outputs found

    Multi-stage scheme for nonlinear Breit-Wheeler pair-production utilising ultra-intense laser-solid interactions

    Get PDF
    Multi-petawatt (PW) lasers enable intensities exceeding 1023 W cm-2, at which point quantum electrodynamics (QED) processes, such as electron-positron pair-production via the nonlinear Breit-Wheeler process, will play a significant role in laser-plasma interactions. Using 2D QED-particle-in-cell simulations, we present a two-stage scheme in which nonlinear pair-production is induced via an ultra-intense laser-solid interaction. The first stage is the generation of a γ-ray beam, through the interaction of an ultra-intense laser pulse with a thick target, whose features are found to be strongly dependent on collective plasma effects. This compact, high energy γ-ray beam (characterised by a divergence half-angle ∼10° and average photon energy ∼10 MeV) then interacts with two counter-propagating laser pulses. By varying the laser polarisation and angle of incidence, we show that in the case of two circularly polarised laser pulses propagating at an angle equal to the divergence half-angle of the γ-ray beam, the produced positron distribution is highly anisotropic compared to the case of a standard head-on collision

    γ-ray generation enhancement by the charge separation field in laser-target interaction in the radiation dominated regime

    Get PDF
    A new source of radiation can be created with a laser pulse of intensity 1023W/cm2 interacting with a slightly overdense plasma. Collective effects driven by the electrostatic field significantly enhance the synchrotron radiation. They impact on the laser energy repartition leading to a specific emission but also constitute a crucial element for the intense radiation production. They allow electrons to be accelerated over a length up to 10 laser wavelengths favoring emission of an intense radiation. It is shown that charge separation field depends on the ion mass and target thickness but also on laser polarization. These phenomena are studied with an one dimensional relativistic particle-in-cell code accounting for the classical radiation reaction force

    Energy exchange via multi-species streaming in laser-driven ion acceleration

    Get PDF
    Due to the complex electron dynamics and multiple ion acceleration mechanisms that can take place in the interaction of an ultra-intense laser pulse with a thin foil, it is possible for multiple charged particle populations to overlap in space with varying momentum distributions. In certain scenarios this can drive streaming instabilities such as the relativistic Buneman instability and the ion-ion acoustic instability. The potential for such instabilities to occur are demonstrated using particle-in-cell simulations. It is shown that if a population of ions can be accelerated such that it can propagate through other slowly expanding ion populations, energy exchange can occur via the ion-ion acoustic instability

    High-density electron-ion bunch formation and multi-GeV positron production via radiative trapping in extreme-intensity laser-plasma interactions

    Get PDF
    Multi-petawatt laser systems will open up a novel interaction regime mixing collective plasma and quantum electrodynamic processes, giving rise to prolific generation of gamma-ray photons and electron-positron pairs. Here, using particle- in-cell simulations, we investigate the physics of the interaction of a 1024W.cm−2 intensity, 30 fs duration, circularly polarized laser pulse with a long deuterium plasma at classically overcritical electron density (1022 cm−3). We show that radiative trapping of the plasma electrons causes a high-density (∼ 5×1023 cm−3), quasineutral electron-ion bunch to form inside the laser pulse. This phenomenon is accompanied by up to ∼ 40% energy conversion efficiency of the laser into gamma rays. Moreover, we find that both the radiation-modified Laplace force and the longitudinal electric field exerted on the positrons created by the multiphoton Breit-Wheeler process can accelerate them to GeV-range energies. We develop a theoretical model, the predictions of which provide a good match to the simulation results. Finally, we address the influence of the ion mass, showing that the laser absorption and positron acceleration is enhanced with deuterons compared to protons

    Radiating electron source generation in ultraintense laser-foil interactions

    Get PDF
    A radiating electron source is shown to be created by a laser pulse (with intensity of 10^23 W/cm^2 and duration equal to 30 fs) interacting with a near-critical density plasma. It is shown that the back radiation reaction resulting from high energy synchrotron radiation tends to counteract the action of the ponderomotive force. This enhances the collective dynamics of the radiating electrons in the highest field areas, resulting in the production of a compact radiation source (containing 80% of the synchrotron radiation emission), with an energy on the order of tens of MeV over the laser pulse duration. These phenomena are investigated using a QED-particle-in-cell code, and compared with a kinetic model accounting for the radiation reaction force in the electron distribution function. The results shed new light on electron-photon sources at ultra-high laser intensities and could be tested on future laser facilities

    High order mode structure of intense light fields generated via a laser-driven relativistic plasma aperture

    Get PDF
    The spatio-temporal and polarisation properties of intense light is important in wide-ranging topics at the forefront of extreme light-matter interactions, including ultrafast laser-driven particle acceleration, attosecond pulse generation, plasma photonics, high-field physics and laboratory astrophysics. Here, we experimentally demonstrate modifications to the polarisation and temporal properties of intense light measured at the rear of an ultrathin target foil irradiated by a relativistically intense laser pulse. The changes are shown to result from a superposition of coherent radiation, generated by a directly accelerated bipolar electron distribution, and the light transmitted due to the onset of relativistic self-induced transparency. Simulations show that the generated light has a high-order transverse electromagnetic mode structure in both the first and second laser harmonics that can evolve on intra-pulse time-scales. The mode structure and polarisation state vary with the interaction parameters, opening up the possibility of developing this approach to achieve dynamic control of structured light fields at ultrahigh intensities

    Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Get PDF
    Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution

    Ion acceleration with radiation pressure in quantum electrodynamic regimes

    Get PDF
    The radiation pressure of next generation high-intensity lasers could efficiently accelerate ions to GeV energies. However, nonlinear quantum-electrodynamic effects play an important role in the interaction of these lasers with matter. We show that these quantum-electrodynamic effects lead to the production of a critical density pair-plasma which completely absorbs the laser pulse and consequently reduces the accelerated ion energy and efficiency by 30-50%

    Efficient ion acceleration and dense electron-positron plasma creation in ultra-high intensity laser-solid interactions

    Get PDF
    The radiation pressure of next generation ultra-high intensity (>1023>10^{23} W/cm2^{2}) lasers could efficiently accelerate ions to GeV energies. However, nonlinear quantum-electrodynamic effects play an important role in the interaction of these laser pulses with matter. Here we show that these effects may lead to the production of an extremely dense (∼1024\sim10^{24} cm−3^{-3}) pair-plasma which absorbs the laser pulse consequently reducing the accelerated ion energy and energy conversion efficiency by up to 30-50\%
    corecore