8 research outputs found

    K X-ray Emission for Slow Oxygen Ions Approaching a Copper Metal Surface

    No full text
    We report on the K X-ray emission for 9–140 keV oxygen ions with initial charge states from 3 to 7 approaching a copper surface. The peak center of the measured X-ray spectrum slightly shifts towards higher energies with the increasing of the initial charge state of the incident ions. For the collisions of oxygen ions with no K-vacancies (q = 3–6), the X-ray yield per incident ion increases gradually with the projectile’s kinetic energy, while for the O7+ ions (with a K-vacancy) it is nearly independent of the energy. The K-shell ionization cross-sections for the oxygen ions with no K-vacancies obtained from the experiments are well consistent with the calculations of the binary encounter approximation model when the collision energy is larger than 30 keV, whereas they are several times larger than the theoretical values at collision energies of less than 30 keV

    K X-ray Emission for Slow Oxygen Ions Approaching a Copper Metal Surface

    No full text
    We report on the K X-ray emission for 9–140 keV oxygen ions with initial charge states from 3 to 7 approaching a copper surface. The peak center of the measured X-ray spectrum slightly shifts towards higher energies with the increasing of the initial charge state of the incident ions. For the collisions of oxygen ions with no K-vacancies (q = 3–6), the X-ray yield per incident ion increases gradually with the projectile’s kinetic energy, while for the O7+ ions (with a K-vacancy) it is nearly independent of the energy. The K-shell ionization cross-sections for the oxygen ions with no K-vacancies obtained from the experiments are well consistent with the calculations of the binary encounter approximation model when the collision energy is larger than 30 keV, whereas they are several times larger than the theoretical values at collision energies of less than 30 keV

    Double <i>K</i>-Shell Ionization of Ar by 197-MeV/u Xe<sup>54+</sup> Ion Impact

    No full text
    We present an experimental study on the double K-shell ionization of argon in single collisions with the Xe54+ ion at 197 MeV/u. The X-ray spectra of multi-ionized argon are measured at the observation angles of 90° and 145° with respect to the projectile beam. The target K X-ray satellite and hypersatellite lines are analyzed with a fitting model and the cross-section ratio of double to single K-shell ionization is derived. The experimental results are compared to the relativistic time-dependent, two-center calculations, and a reasonable agreement is reached

    Double K-Shell Ionization of Ar by 197-MeV/u Xe54+ Ion Impact

    No full text
    We present an experimental study on the double K-shell ionization of argon in single collisions with the Xe54+ ion at 197 MeV/u. The X-ray spectra of multi-ionized argon are measured at the observation angles of 90&deg; and 145&deg; with respect to the projectile beam. The target K X-ray satellite and hypersatellite lines are analyzed with a fitting model and the cross-section ratio of double to single K-shell ionization is derived. The experimental results are compared to the relativistic time-dependent, two-center calculations, and a reasonable agreement is reached

    Slow isocharged sequence ions with helium collisions: Projectile core dependence

    No full text
    The collisions of the isocharged sequence ions of q=6 (C6+, N6+, O6+, F6+, Ne6+, Ar6+, and Ca6+), q=7 (F7+, Ne7+, S7+, Ar7+, and Ca7+), q=8 (F8+, Ne8+, Ar8+, and Ca8+), q=9 (F9+, Ne9+, Si9+, S9+, Ar9+, and Ca9+) and q=11 (Si11+, Ar11+, and Ca11+) with helium at the same velocities were investigated. The cross-section ratios of the double-electron transfer (DET) to the single-electron capture (SEC) sigma(DET)/sigma(SEC) and the true double-electron capture (TDC) to the double-electron transfer sigma(TDC)/sigma(DET) were measured. It shows that for different ions in an isocharged sequence, the experimental cross-section ratio sigma(DET)/sigma(SEC) varies by a factor of 3. The results confirm that the projectile core is another dominant factor besides the charge state and the collision velocity in slow (0.35-0.49v(0); v(0) denotes the Bohr velocity) highly charged ions (HCIs) with helium collisions. The experimental cross-section ratio sigma(DET)/sigma(SEC) is compared with the extended classical over-barrier model (ECBM) [A. Barany , Nucl. Instrum. Methods Phys. Res. B 9, 397 (1985)], the molecular Coulombic barrier model (MCBM) [A. Niehaus, J. Phys. B 19, 2925 (1986)], and the semiempirical scaling laws (SSL) [N. Selberg , Phys. Rev. A 54, 4127 (1996)]. It also shows that the projectile core properties affect the initial capture probabilities as well as the subsequent relaxation of the projectiles. The experimental cross-section ratio sigma(TDC)/sigma(DET) for those lower isocharged sequences is dramatically affected by the projectile core structure, while for those sufficiently highly isocharged sequences, the autoionization always dominates, hence the cross-section ratio sigma(TDC)/sigma(DET) is always small
    corecore