40,996 research outputs found
Control of lasing in fully chaotic open microcavities by tailoring the shape factor
We demonstrate experimentally that lasing in a semiconductor microstadium can
be optimized by controlling its shape. Under spatially uniform optical pumping,
the first lasing mode in a GaAs microstadium with large major-to-minor-axis
ratio usually corresponds to a high-quality scar mode consisting of several
unstable periodic orbits. Interference of waves propagating along the
constituent orbits may minimize light leakage at particular major-to-minor-axis
ratio. By making stadium of the optimum shape, we are able to maximize the mode
quality factor and align the mode frequency to the peak of the gain spectrum,
thus minimizing the lasing threshold. This work opens the door to control
chaotic microcavity lasers by tailoring the shape factor
Twin wall of cubic-tetragonal ferroelastics
We derive solutions for the twin wall linking two tetragonal variants of the
cubic-tetragonal ferroelastic transformation, including for the first time the
dilatational and shear energies and strains. Our solutions satisfy the
compatibility relations exactly and are obtained at all temperatures. They
require four non-vanishing strains except at the Barsch-Krumhansl temperature
TBK (where only the two deviatoric strains are needed). Between the critical
temperature and TBK, material in the wall region is dilated, while below TBK it
is compressed. In agreement with experiment and more general theory, the twin
wall lies in a cubic 110-type plane. We obtain the wall energy numerically as a
function of temperature and we derive a simple estimate which agrees well with
these values.Comment: 4 pages (revtex), 3 figure
Generalized r-matrix structure and algebro-geometric solution for integrable systems
The purpose of this paper is to construct a generalized r-matrix structure of
finite dimensional systems and an approach to obtain the algebro-geometric
solutions of integrable nonlinear evolution equations (NLEEs). Our starting
point is a generalized Lax matrix instead of usual Lax pair. The generalized
r-matrix structure and Hamiltonian functions are presented on the basis of
fundamental Poisson bracket. It can be clearly seen that various nonlinear
constrained (c-) and restricted (r-) systems, such as the c-AKNS, c-MKdV,
c-Toda, r-Toda, c-Levi, etc, are derived from the reduction of this structure.
All these nonlinear systems have {\it r}-matrices, and are completely
integrable in Liouville's sense. Furthermore, our generalized structure is
developed to become an approach to obtain the algebro-geometric solutions of
integrable NLEEs. Finally, the two typical examples are considered to
illustrate this approach: the infinite or periodic Toda lattice equation and
the AKNS equation with the condition of decay at infinity or periodic boundary.Comment: 41 pages, 0 figure
Competing Ground States in Triple-layered Sr4Ru3O10: Verging on Itinerant Ferromagnetism with Critical Fluctuations
Sr4Ru3O10 is characterized by a sharp metamagnetic transition and
ferromagnetic behavior occurring within the basal plane and along the c-axis,
respectively. Resistivity at magnetic field, B, exhibits low-frequency quantum
oscillations when B||c-axis and large magnetoresistivity accompanied by
critical fluctuations driven by the metamagnetism when B^c-axis. The complex
behavior evidenced in resistivity, magnetization and specific heat presented is
not characteristic of any obvious ground states, and points to an exotic state
that shows a delicate balance between fluctuations and order.Comment: 18 pages, 4 figure
From St\"{a}ckel systems to integrable hierarchies of PDE's: Benenti class of separation relations
We propose a general scheme of constructing of soliton hierarchies from
finite dimensional St\"{a}ckel systems and related separation relations. In
particular, we concentrate on the simplest class of separation relations,
called Benenti class, i.e. certain St\"{a}ckel systems with quadratic in
momenta integrals of motion.Comment: 24 page
Bandwidth-Controlled Insulator-Metal Transition and Correlated Metallic State in 5 Transition Metal Oxides SrIrO (=1, 2, and )
We investigated the electronic structures of the 5 Ruddlesden-Popper
series SrIrO (=1, 2, and ) using optical
spectroscopy and first-principles calculations. As 5 orbitals are spatially
more extended than 3 or 4 orbitals, it has been widely accepted that
correlation effects are minimal in 5 compounds. However, we observed a
bandwidth-controlled transition from a Mott insulator to a metal as we
increased . In addition, the artificially synthesized perovskite SrIrO
showed a very large mass enhancement of about 6, indicating that it was in a
correlated metallic state
- …