51,558 research outputs found

    Critical Behavior of Hadronic Fluctuations and the Effect of Final-State Randomization

    Get PDF
    The critical behaviors of quark-hadron phase transition are explored by use of the Ising model adapted for hadron production. Various measures involving the fluctuations of the produced hadrons in bins of various sizes are examined with the aim of quantifying the clustering properties that are universal features of all critical phenomena. Some of the measures involve wavelet analysis. Two of the measures are found to exhibit the canonical power-law behavior near the critical temperature. The effect of final-state randomization is studied by requiring the produced particles to take random walks in the transverse plane. It is demonstrated that for the measures considered the dependence on the randomization process is weak. Since temperature is not a directly measurable variable, the average hadronic density of a portion of each event is used as the control variable that is measurable. The event-to-event fluctuations are taken into account in the study of the dependence of the chosen measures on that control variable. Phenomenologically verifiable critical behaviors are found and are proposed for use as a signature of quark-hadron phase transition in relativistic heavy-ion collisions.Comment: 17 pages (Latex) + 24 figures (ps file), submitted to Phys. Rev.

    Coping with Stress: The Caulobacter Approach

    Get PDF

    Achieving Effective Innovation Based On TRIZ Technological Evolution

    Get PDF
    Organised by: Cranfield UniversityThis paper outlines the conception of effective innovation and discusses the method to achieve it. Effective Innovation is constrained on the path of technological evolution so that the corresponding path must be detected before conceptual design of the product. The process of products technological evolution is a technical developing process that the products approach to Ideal Final Result (IFR). During the process, the sustaining innovation and disruptive innovation carry on alternately. By researching and forecasting potential techniques using TRIZ technological evolution theory, the effective innovation can be achieved finally.Mori Seiki – The Machine Tool Compan

    Fake View Analytics in Online Video Services

    Full text link
    Online video-on-demand(VoD) services invariably maintain a view count for each video they serve, and it has become an important currency for various stakeholders, from viewers, to content owners, advertizers, and the online service providers themselves. There is often significant financial incentive to use a robot (or a botnet) to artificially create fake views. How can we detect the fake views? Can we detect them (and stop them) using online algorithms as they occur? What is the extent of fake views with current VoD service providers? These are the questions we study in the paper. We develop some algorithms and show that they are quite effective for this problem.Comment: 25 pages, 15 figure

    Erraticity of Rapidity Gaps

    Full text link
    The use of rapidity gaps is proposed as a measure of the spatial pattern of an event. When the event multiplicity is low, the gaps between neighboring particles carry far more information about an event than multiplicity spikes, which may occur very rarely. Two moments of the gap distrubiton are suggested for characterizing an event. The fluctuations of those moments from event to event are then quantified by an entropy-like measure, which serves to describe erraticity. We use ECOMB to simulate the exclusive rapidity distribution of each event, from which the erraticity measures are calculated. The dependences of those measures on the order of qq of the moments provide single-parameter characterizations of erraticity.Comment: 10 pages LaTeX + 5 figures p

    Closed-loop control strategy with improved current for a flashing ratchet

    Full text link
    We show how to switch on and off the ratchet potential of a collective Brownian motor, depending only on the position of the particles, in order to attain a current higher than or at least equal to that induced by any periodic flashing. Maximization of instant velocity turns out to be the optimal protocol for one particle but is nevertheless defeated by a periodic switching when a sufficiently large ensemble of particles is considered. The protocol presented in this article, although not the optimal one, yields approximately the same current as the optimal protocol for one particle and as the optimal periodic switching for an infinite number of them.Comment: 4 pages, 4 figure

    Efficiency of Brownian Motors

    Get PDF
    The efficiency of different types of Brownian motors is calculated analytically and numerically. We find that motors based on flashing ratchets present a low efficiency and an unavoidable entropy production. On the other hand, a certain class of motors based on adiabatically changing potentials, named reversible ratchets, exhibit a higher efficiency and the entropy production can be arbitrarily reduced.Comment: LaTeX 209, 6 pages, 7 postscript figures, uses psfi

    Sequential Adaptive Detection for In-Situ Transmission Electron Microscopy (TEM)

    Full text link
    We develop new efficient online algorithms for detecting transient sparse signals in TEM video sequences, by adopting the recently developed framework for sequential detection jointly with online convex optimization [1]. We cast the problem as detecting an unknown sparse mean shift of Gaussian observations, and develop adaptive CUSUM and adaptive SSRS procedures, which are based on likelihood ratio statistics with post-change mean vector being online maximum likelihood estimators with â„“1\ell_1. We demonstrate the meritorious performance of our algorithms for TEM imaging using real data

    Evolution of Magnetism in Single-Crystal Honeycomb Iridates

    Get PDF
    We report the successful synthesis of single-crystals of the layered iridate, (Na1−x_{1-x}Lix_{x})2_2IrO3_3, 0≤x≤0.90\leq x \leq 0.9, and a thorough study of its structural, magnetic, thermal and transport properties. The new compound allows a controlled interpolation between Na2_2IrO3_3 and Li2_2IrO3_3, while maintaing the novel quantum magnetism of the honeycomb Ir4+^{4+} planes. The measured phase diagram demonstrates a dramatic suppression of the N\'eel temperature, TNT_N, at intermediate xx suggesting that the magnetic order in Na2_2IrO3_3 and Li2_2IrO3_3 are distinct, and that at x≈0.7x\approx 0.7, the compound is close to a magnetically disordered phase that has been sought after in Na2_2IrO3_3 and Li2_2IrO3_3. By analyzing our magnetic data with a simple theoretical model we also show that the trigonal splitting, on the Ir4+^{4+} ions changes sign from Na2_2IrO3_3 and Li2_2IrO3_3, and the honeycomb iridates are in the strong spin-orbit coupling regime, controlled by \jeff=1/2 moments.Comment: updated version with more dat
    • …
    corecore