1,160 research outputs found
Shaping of molecular weight distribution using b-spline based predictive probability density function control
Issues of modelling and control of molecular weight distributions (MWDs) of polymerization products have been studied under the recently developed framework of stochastic distribution control, where the purpose is to design the required control inputs that can effectively shape the output probability density functions (PDFs) of the dynamic stochastic systems. The B-spline Neural Network has been implemented to approximate the function of MWDs provided by the mechanism model, based on which a new predictive PDF control strategy has been developed. A simulation study of MWD control of a pilot-plant styrene polymerization process has been given to demonstrate the effectiveness of the algorithms
A case study in model-driven synthetic biology
We report on a case study in synthetic biology, demonstrating the modeldriven
design of a self-powering electrochemical biosensor. An essential result of
the design process is a general template of a biosensor, which can be instantiated
to be adapted to specific pollutants. This template represents a gene expression network
extended by metabolic activity. We illustrate the model-based analysis of this
template using qualitative, stochastic and continuous Petri nets and related analysis
techniques, contributing to a reliable and robust design
A first-principles study of oxygen vacancy pinning of domain walls in PbTiO3
We have investigated the interaction of oxygen vacancies and 180-degree
domain walls in tetragonal PbTiO3 using density-functional theory. Our
calculations indicate that the vacancies do have a lower formation energy in
the domain wall than in the bulk, thereby confirming the tendency of these
defects to migrate to, and pin, the domain walls. The pinning energies are
reported for each of the three possible orientations of the original Ti-O-Ti
bonds, and attempts to model the results with simple continuum models are
discussed.Comment: 8 pages, with 3 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/lh_dw/index.htm
On the Importance of Electroweak Corrections for Majorana Dark Matter Indirect Detection
Recent analyses have shown that the inclusion of electroweak corrections can
alter significantly the energy spectra of Standard Model particles originated
from dark matter annihilations. We investigate the important situation where
the radiation of electroweak gauge bosons has a substantial influence: a
Majorana dark matter particle annihilating into two light fermions. This
process is in p-wave and hence suppressed by the small value of the relative
velocity of the annihilating particles. The inclusion of electroweak radiation
eludes this suppression and opens up a potentially sizeable s-wave contribution
to the annihilation cross section. We study this effect in detail and explore
its impact on the fluxes of stable particles resulting from the dark matter
annihilations, which are relevant for dark matter indirect searches. We also
discuss the effective field theory approach, pointing out that the opening of
the s-wave is missed at the level of dimension-six operators and only encoded
by higher orders.Comment: 25 pages, 6 figures. Minor corrections to match version published in
JCA
Determination of the and Mixing Angle from the Pseudoscalar Transition Form Factors
The possible range of mixing angle is determined from the
transition form factors and with
the help of the present experimental data. For such purpose, the quark-flavor
mixing scheme is adopted and the pseudoscalar transition form factors are
calculated under the light-cone pQCD framework, where the transverse momentum
corrections and the contributions beyond the leading Fock state have been
carefully taken into consideration. We construct a phenomenological expression
to estimate the contributions to the form factors beyond the leading Fock state
based on their asymptotic behavior at and . By taking
the quark-flavor mixing scheme, our results lead to , where the first error coming from experimental
uncertainty and the second error coming from the uncertainties of the
wavefunction parameters. The possible intrinsic charm component in and
is discussed and our present analysis also disfavors a large portion of
intrinsic charm component in and , e.g. .Comment: 18 Pages, 3 figures. Several references added. To be published in
EPJ
The effect of the annealing temperature on the local distortion of LaCaMnO thin films
Mn -edge fluorescence data are presented for thin film samples (3000~\AA)
of Colossal Magnetoresistive (CMR) LaCaMnO: as-deposited,
and post-annealed at 1000 K and 1200 K. The local distortion is analyzed in
terms of three contributions: static, phonon, and an extra,
temperature-dependent, polaron term. The polaron distortion is very small for
the as-deposited sample and increases with the annealing temperature. In
contrast, the static distortion in the samples decreases with the annealing
temperature. Although the local structure of the as-deposited sample shows very
little temperature dependence, the change in resistivity with temperature is
the largest of these three thin film samples. The as-deposited sample also has
the highest magnetoresistance (MR), which indicates some other mechanism may
also contribute to the transport properties of CMR samples. We also discuss the
relationship between local distortion and the magnetization of the sample.Comment: 11 pages of Preprint format, 8 figures in one tar fil
Virtual Effects of Split SUSY in Higgs Productions at Linear Colliders
In split supersymmetry the gauginos and higgsinos are the only supersymmetric
particles possibly accessible at foreseeable colliders like the CERN Large
Hadron Collider (LHC) and the International Linear Collider (ILC). In order to
account for the cosmic dark matter measured by WMAP, these gauginos and
higgsinos are stringently constrained and could be explored at the colliders
through their direct productions and/or virtual effects in some processes. The
clean environment and high luminosity of the ILC render the virtual effects of
percent level meaningful in unraveling the new physics effects. In this work we
assume split supersymmetry and calculate the virtual effects of the
WMAP-allowed gauginos and higgsinos in Higgs productions e+e- -> Z h and e+e-
-> \nu_e \bar_\nu_e h through WW fusion at the ILC. We find that the production
cross section of e+e- -> Zh can be altered by a few percent in some part of the
WMAP-allowed parameter space, while the correction to the WW-fusion process
e+e- -> \nu_e \bar_\nu_e h is below 1%. Such virtual effects are correlated
with the cross sections of chargino pair productions and can offer
complementary information in probing split supersymmetry at the colliders.Comment: more discussions added (7 pages, 10 figs
A Raman Study of Morphotropic Phase Boundary in PbZr1-xTixO3 at low temperatures
Raman spectra of PbZr1-xTixO3 ceramics with titanium concentration varying
between 0.40 and 0.60 were measured at 7 K. By observing the
concentration-frequency dependence of vibrational modes, we identified the
boundaries among rhombohedral, monoclinic, and tetragonal ferroelectric phases.
The analysis of the spectra was made in the view of theory group analysis
making possible the assignment of some modes for the monoclinic phase.Comment: 5 pages, 4 figure
Supersymmetric effects in top quark decay into polarized W-boson
We investigate the one-loop supersymmetric QCD (SUSY-QCD) and electroweak
(SUSY-EW) corrections to the top quark decay into a b-quark and a longitudinal
or transverse W-boson. The corrections are presented in terms of the
longitudinal ratio \Gamma(t-->W_L b)/\Gamma(t--> W b) and the transverse ratio
\Gamma(t-->W_- b)/\Gamma(t--> W b). In most of the parameter space, both
SUSY-QCD and SUSY-EW corrections to these ratios are found to be less than 1%
in magnitude and they tend to have opposite signs. The corrections to the total
width \Gamma(t-->W b) are also presented for comparison with the existing
results in the literature. We find that our SUSY-EW corrections to the total
width differ significantly from previous studies: the previous studies give a
large correction of more than 10% in magnitude for a large part of the
parameter space while our results reach only few percent at most.Comment: Version in PRD (explanation and refs added
- …