1,073 research outputs found

    A rotary-linear switched reluctance motor

    Get PDF
    Author name used in this publication: J. F. PanAuthor name used in this publication: N. C. CheungRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Design and analysis of a DSP-based linear switched reluctance motor

    Get PDF
    Author name used in this publication: J. F. PanAuthor name used in this publication: N. C. CheungRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Design and analysis of a novel X-Y table

    Get PDF
    Author name used in this publication: J. F. PanAuthor name used in this publication: N. C. CheungRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal VO2 beams

    Full text link
    Spatial phase inhomogeneity at the nano- to microscale is widely observed in strongly-correlated electron materials. The underlying mechanism and possibility of artificially controlling the phase inhomogeneity are still open questions of critical importance for both the phase transition physics and device applications. Lattice strain has been shown to cause the coexistence of metallic and insulating phases in the Mott insulator VO2. By continuously tuning strain over a wide range in single-crystal VO2 micro- and nanobeams, here we demonstrate the nucleation and manipulation of one-dimensionally ordered metal-insulator domain arrays along the beams. Mott transition is achieved in these beams at room temperature by active control of strain. The ability to engineer phase inhomogeneity with strain lends insight into correlated electron materials in general, and opens opportunities for designing and controlling the phase inhomogeneity of correlated electron materials for micro- and nanoscale device applications.Comment: 14 pages, 4 figures, with supplementary informatio

    Adaptive Subspace Sampling for Class Imbalance Processing-Some clarifications, algorithm, and further investigation including applications to Brain Computer Interface

    Full text link
    © 2020 IEEE. Kohonen's Adaptive Subspace Self-Organizing Map (ASSOM) learns several subspaces of the data where each subspace represents some invariant characteristics of the data. To deal with the imbalance classification problem, earlier we have proposed a method for oversampling the minority class using Kohonen's ASSOM. This investigation extends that study, clarifies some issues related to our earlier work, provides the algorithm for generation of the oversamples, applies the method on several benchmark data sets, and makes an application to a Brain Computer Interface (BCI) problem. First we compare the performance of our method using some benchmark data sets with several state-of-The-Art methods. Finally, we apply the ASSOM-based technique to analyze a BCI based application using electroencephalogram (EEG) datasets. Our results demonstrate the effectiveness of the ASSOM-based method in dealing with imbalance classification problem

    The Shapes of Cooperatively Rearranging Regions in Glass Forming Liquids

    Full text link
    The shapes of cooperatively rearranging regions in glassy liquids change from being compact at low temperatures to fractal or ``stringy'' as the dynamical crossover temperature from activated to collisional transport is approached from below. We present a quantitative microscopic treatment of this change of morphology within the framework of the random first order transition theory of glasses. We predict a correlation of the ratio of the dynamical crossover temperature to the laboratory glass transition temperature, and the heat capacity discontinuity at the glass transition, Delta C_p. The predicted correlation agrees with experimental results for the 21 materials compiled by Novikov and Sokolov.Comment: 9 pages, 6 figure

    ARPES: A probe of electronic correlations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancini, Springer Series in Solid-State Sciences (2013). A high-resolution version can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf. arXiv admin note: text overlap with arXiv:cond-mat/0307085, arXiv:cond-mat/020850
    corecore