346 research outputs found

    LRF-Net: Learning Local Reference Frames for 3D Local Shape Description and Matching

    Full text link
    The local reference frame (LRF) acts as a critical role in 3D local shape description and matching. However, most of existing LRFs are hand-crafted and suffer from limited repeatability and robustness. This paper presents the first attempt to learn an LRF via a Siamese network that needs weak supervision only. In particular, we argue that each neighboring point in the local surface gives a unique contribution to LRF construction and measure such contributions via learned weights. Extensive analysis and comparative experiments on three public datasets addressing different application scenarios have demonstrated that LRF-Net is more repeatable and robust than several state-of-the-art LRF methods (LRF-Net is only trained on one dataset). In addition, LRF-Net can significantly boost the local shape description and 6-DoF pose estimation performance when matching 3D point clouds.Comment: 28 pages, 14 figure

    TasselNet: Counting maize tassels in the wild via local counts regression network

    Full text link
    Accurately counting maize tassels is important for monitoring the growth status of maize plants. This tedious task, however, is still mainly done by manual efforts. In the context of modern plant phenotyping, automating this task is required to meet the need of large-scale analysis of genotype and phenotype. In recent years, computer vision technologies have experienced a significant breakthrough due to the emergence of large-scale datasets and increased computational resources. Naturally image-based approaches have also received much attention in plant-related studies. Yet a fact is that most image-based systems for plant phenotyping are deployed under controlled laboratory environment. When transferring the application scenario to unconstrained in-field conditions, intrinsic and extrinsic variations in the wild pose great challenges for accurate counting of maize tassels, which goes beyond the ability of conventional image processing techniques. This calls for further robust computer vision approaches to address in-field variations. This paper studies the in-field counting problem of maize tassels. To our knowledge, this is the first time that a plant-related counting problem is considered using computer vision technologies under unconstrained field-based environment.Comment: 14 page

    Security enhancement using a novel two-slot cooperative NOMA scheme

    Get PDF
    In this letter, we propose a novel cooperative non-orthogonal multiple access (NOMA) scheme to guarantee the secure transmission of a specific user via two time slots. During the first time slot, the base station (BS) transmits the superimposed signal to the first user and the relay via NOMA. Meanwhile, the signal for the first user is also decoded at the second user from the superimposed signal due to its high transmit power. In the second time slot, the relay forwards the signal to the second user while the BS retransmits the signal for the first user as interference to disrupt the eavesdropping. Due to the fact that the second user has obtained the signal for the first user in the first slot, the interference can be eliminated at the second user. To measure the performance of the proposed cooperative NOMA scheme, the outage probability for the first user and the secrecy outage probability for the second user are analyzed. Simulation results are presented to show the effectiveness of the proposed scheme

    Hybrid Successive Interference Cancellation and Power Adaptation: a Win-Win Strategy for Robust Uplink NOMA Transmission

    Full text link
    The aim of this paper is to reveal the importance of hybrid successive interference cancellation (SIC) and power adaptation (PA) for improving transmission robustness of uplink non-orthogonal multiple access (NOMA). Particularly, a cognitive radio inspired uplink NOMA communication scenario is considered, where one primary user is allocated one dedicated resource block, while M secondary users compete with each other to be opportunistically served by using the same resource block of the primary user. Two novel schemes are proposed for the considered scenario, namely hybrid SIC with PA (HSIC-PA) scheme and fixed SIC with PA (FSIC-PA) scheme. Both schemes can ensure that the secondary users are served without degrading the transmission reliability of the primary user compared to conventional orthogonal multiple access (OMA) based schemes. Rigorous analytical results are presented to evaluate the performance of the proposed two schemes. It is shown that both schemes can avoid outage probability error floors without any constraints on users' target rates in the high SNR regime. Furthermore, it is shown that the diversity gain achieved by the HSIC-PA scheme is M, while that of the FISC-PA scheme is only 1. Numerical results are provided to verify the developed analytical results and also demonstrate the superior performance achieved by the proposed schemes by comparing with the existing HSIC without PA (HSIC-NPA) scheme. The presented simulation results also show that HSIC-PA scheme performs the best among the three schemes, which indicates the importance of the combination of HSIC and PA for improving transmission robustness.Comment: arXiv admin note: substantial text overlap with arXiv:2307.0151
    • …
    corecore