92 research outputs found

    Study of defects in directed energy deposited Vanadis 4 Extra tool steel

    Get PDF
    A cold work tool steel with varied number of layers was deposited on a substrate of hot work tool steel for hard-facing by directed energy deposition technique. This study deals with the defects and microstructure in the as-cladded tool steels. Defects, including pores and cracks, were found in the deposited zone, the number of which increased with the building height or number of layers deposited. Large irregular pores were mainly located at the lower regions of the deposited layers. The formation of this type of pores was attributed to the segregation of alloy elements on the pore surface and insufficient heat input. Non-equilibrium eutectic microstructure was a characteristic feature in the regions adjacent to the pores. Cracking, on the other hand, tended to occur in the upper part of the deposited layers. Two important contributing factors were identified for cracking. The first one was the microstructural gradient, which was modified from fine cellular dendrite to columnar dendrite when moving from the bottom to the top deposited layer. Second, the deposited cold work tool steel exhibited a relatively large temperature range of solidification, as simulated by Thermocalc software, leading to high sensitivity to hot cracking

    Time and temperature dependent softening of a novel maraging steel fabricated by laser metal deposition

    Get PDF
    Durability is a critical factor for hot stamping dies from an economic point of view. Refurbishing the dies by depositing new material instead of replacement is a promising method to reduce the cost. For this reason, a newly developed maraging steel (NMS) was cladded on a hot work tool steel by means of directed energy deposition. After an optimized tempering, exposures at high temperatures were carried out on the cladded NMS in order to examine the softening resistance. The microstructural evolution of the material was systematically characterized using a combination of optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and transmission electron microscopy (TEM). The precipitate in the cladded steel was identified as Laves phase. The coarsening of this phase is considered as the main reason for the thermal softening of the steel at high temperatures. The coarsening behavior was also simulated by using the revised Langer-Schwartz-Wagner (LSW) model, which was in good agreement with experimental observations. Moreover, a mathematical model of precipitate strengthening was successfully applied to evaluate the softening behavior of the steel. This model can be used to predict the hardness/strength evolution of the investigated tool steel during its high-temperature service

    A Case Study for a Worn Tool Steel in the Hot Stamping Process

    Get PDF
    A good understanding of failure mechanisms can help us improve the lifetime of the dies. This paper presents a case study investigating the wear behavior of a QRO90 die insert utilized for stamping uncoated boron-alloyed high-strength steel sheets. Topography and microstructure were characterized by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), hardness measurement and X-ray photoelectron spectroscopy (XPS). Severe galling due to accumulated layers transferred from the boron-alloyed steel workpieces occurred on the die surface. Material softening was detected in the sublayer of the tool steel (up to ∼200 μm). In addition, white layers with a in a thickness of 1-2 μm were frequently observed on the surface of the round corner of the tool. The main wear mechanisms are discussed. Galling caused by surface softening and the spallation of white layers are considered to be the primary wear mechanisms for the tool

    Consecutive Slides on Axial View Is More Effective Than Transversal Diameter to Differentiate Mechanisms of Single Subcortical Infarctions in the Lenticulostriate Artery Territory

    Get PDF
    Objective: Lipohyalinosis or atherosclerosis might be responsible for single subcortical infarctions (SSIs); however, ways of differentiating between the two clinically remain uncertain. We aimed to investigate whether consecutive slides on axial view or transversal diameter is more effective to differentiate mechanisms by comparing their relationships with white matter hyperintensities (WMHs).Methods: All the participants from the Standard Medical Management in Secondary Prevention of Ischemic stroke in China (SMART) cohort who had SSIs in the lenticulostriate artery territory were included and categorized according to consecutive slides on axial view (≥4 consecutive slices or not) and transversal diameter (≥15 mm or not). The associations between the severity of WMHs and the different categories were analyzed.Results: Among the 3,821 patients of the SMART study, 281 had diffusion-weighted image-proven SSIs in the lenticulostriate artery territory. When classified by consecutive slides on axial view, SSIs on ≥4 slices were significantly associated with the severity of the WMHs, both in deep WMH (DWMH) (odds ratio [OR], 0.32; 95% confidence interval [CI], 0.11–0.97; p = 0.04) and periventricular hyperintensity (PVH) (OR, 0.37; 95% CI, 0.17–0.78; p = 0.01). No such association was found on the basis of the transversal diameter (p > 0.1).Conclusion: Consecutive slides on axial view (≥4 consecutive slices) might be more effective than transversal diameter to identify the atherosclerotic mechanisms of SSIs in the lenticulostriate artery territory.Clinical Trial Registration:http://www.clinicaltrials.gov. Unique identifier: NCT0066484

    Effect of fasting glucose levels on carotid intima-media thickness in premenopausal versus postmenopausal women

    Get PDF
    ABSTRACT Objective: To investigate the relationship between fasting blood glucose (FBG) and carotid intima-media thickness (IMT) in premenopausal and postmenopausal women. Subjects and methods: The study enrolled 2,959 women seen at the Maanshan People's Hospital of Anhui Province from December 2013 to December 2018. Carotid IMT was measured using Doppler ultrasound. Linear regression and R smoothing curves were used to analyze the relationship between blood glucose level and carotid IMT in the premenopausal and postmenopausal groups. Results: Postmenopausal compared with premenopausal women had higher mean IMT (mIMT; 0.81 ± 0.23 mm versus 0.70 ± 0.14 mm, respectively, p 10 mmol/L in the postmenopausal group. Conclusion: Levels of FBG contributed more to increased IMT in postmenopausal than premenopausal women. The influence of FBG was greater on maxIMT than mIMT. Additionally, FBG was helpful in assessing focal thickening of the carotid intima

    ZYZ-168 alleviates cardiac fibrosis after myocardial infarction through inhibition of ERK1/2-dependent ROCK1 activation

    Get PDF
    Selective treatments for myocardial infarction (MI) induced cardiac fibrosis are lacking. In this study, we focus on the therapeutic potential of a synthetic cardio-protective agent named ZYZ-168 towards MI-induced cardiac fibrosis and try to reveal the underlying mechanism. ZYZ-168 was administered to rats with coronary artery ligation over a period of six weeks. Ecocardiography and Masson staining showed that ZYZ-168 substantially improved cardiac function and reduced interstitial fibrosis. The expression of α–smooth muscle actin (α-SMA) and Collagen I were reduced as was the activity of matrix metalloproteinase 9 (MMP-9). These were related with decreased phosphorylation of ERK1/2 and expression of Rho-associated coiled-coil containing protein kinase 1 (ROCK1). In cardiac fibroblasts stimulated with TGF-β1, phenotypic switches of cardiac fibroblasts to myofibroblasts were observed. Inhibition of ERK1/2 phosphorylation or knockdown of ROCK1 expectedly reduced TGF-β1 induced fibrotic responses. ZYZ-168 appeared to inhibit the fibrotic responses in a concentration dependent manner, in part via a decrease in ROCK 1 expression through inhibition of the phosphorylation status of ERK1/2. For inhibition of ERK1/2 phosphorylation with a specific inhibitor reduced the activation of ROCK1. Considering its anti-apoptosis activity in MI, ZYZ-168 may be a potential drug candidate for treatment of MI-induced cardiac fibrosis
    • …
    corecore