37 research outputs found

    Tetratricopeptide repeat domain 9A is an interacting protein for tropomyosin Tm5NM-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tetratricopeptide repeat domain 9A (TTC9A) protein is a recently identified protein which contains three tetratricopeptide repeats (TPRs) on its C-terminus. In our previous studies, we have shown that TTC9A was a hormonally-regulated gene in breast cancer cells. In this study, we found that TTC9A was over-expressed in breast cancer tissues compared with the adjacent controls (P < 0.00001), suggesting it might be involved in the breast cancer development process. The aim of the current study was to further elucidate the function of TTC9A.</p> <p>Methods</p> <p>Breast samples from 25 patients including the malignant breast tissues and the adjacent normal tissues were processed for Southern blot analysis. Yeast-two-hybrid assay, GST pull-down assay and co-immunoprecipitation were used to identify and verify the interaction between TTC9A and other proteins.</p> <p>Results</p> <p>Tropomyosin Tm5NM-1 was identified as one of the TTC9A partner proteins. The interaction between TTC9A and Tm5NM-1 was further confirmed by GST pull-down assay and co-immunoprecipitation in mammalian cells. TTC9A domains required for the interaction were also characterized in this study. The results suggested that the first TPR domain and the linker fragment between the first two TPR domains of TTC9A were important for the interaction with Tm5NM-1 and the second and the third TPR might play an inhibitory role.</p> <p>Conclusion</p> <p>Since the primary function of tropomyosin is to stabilize actin filament, its interaction with TTC9A may play a role in cell shape and motility. In our previous results, we have found that progesterone-induced TTC9A expression was associated with increased cell motility and cell spreading. We speculate that TTC9A acts as a chaperone protein to facilitate the function of tropomyosins in stabilizing microfilament and it may play a role in cancer cell invasion and metastasis.</p

    Factors associated with patient, and diagnostic delays in Chinese TB patients: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Delay in seeking care is a major impediment to effective management of tuberculosis (TB) in China. To elucidate factors that underpin patient and diagnostic delays in TB management, we conducted a systematic review and meta-analysis of factors that are associated with delays in TB care-seeking and diagnosis in the country. METHODS: This review was prepared following standard procedures of the Cochrane Collaboration and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and checklist. Relevant studies published up to November 2012 were identified from three major international and Chinese literature databases: Medline/PubMed, EMBASE and CNKI (China National Knowledge Infrastructure). RESULTS: We included 29 studies involving 38,947 patients from 17 provinces in China. Qualitative analysis showed that key individual level determinants of delays included socio-demographic and economic factors, mostly poverty, rural residence, lack of health insurance, lower educational attainment, stigma and poor knowledge of TB. Health facility determinants included limited availability of resources to perform prompt diagnosis, lack of qualified health workers and geographical barriers. Quantitative meta-analysis indicated that living in rural areas was a risk factor for patient delays (pooled odds ratio (OR) (95% confidence interval (CI)): 1.79 (1.62, 1.98)) and diagnostic delays (pooled OR (95% CI): 1.40 (1.23, 1.59)). Female patients had higher risk of patient delay (pooled OR (95% CI): 1.94 (1.13, 3.33)). Low educational attainment (primary school and below) was also a risk factor for patient delay (pooled OR (95% CI): 2.14 (1.03, 4.47)). The practice of seeking care first from Traditional Chinese Medicine (TMC) providers was also identified as a risk factor for diagnostic delay (pooled OR (95% CI): 5.75 (3.03, 10.94)). CONCLUSION: Patient and diagnostic delays in TB care are mediated by individual and health facility factors. Population-based interventions that seek to reduce TB stigma and raise awareness about the benefits of early diagnosis and prompt treatment are needed. Policies that remove patients’ financial barriers in access to TB care, and integration of the informal care sector into TB control in urban and rural settings are central factors in TB control

    Effects of Probiotic Bacillus as an Alternative of Antibiotics on Digestive Enzymes Activity and Intestinal Integrity of Piglets

    Get PDF
    The previous study in our team found that supplementation of probiotic Bacillus amyloliquefaciens (Ba) instead of antibiotics promote growth performance of piglets. Hence, the present study was carried out to further demonstrate the effect of Ba replacement of antibiotics on digestive and absorption enzyme activity and intestinal microbiota population of piglets. A total of 90 piglets were selected and divided into three groups: G1 group was fed with basal diet supplemented with 150 mg/Kg aureomycin, G2 group was fed with 1 × 108 cfu/Kg Ba and half dose of aureomycin, G3 group was used the diet with 2 × 108cfu/Kg Ba replaced aureomycin. Each treatment had three replications of 10 pigs per pen. Results indicated that Ba replacement significantly increased the activities of amylase, disaccharides and Na+/K+-ATPase. And chymotrypsin activity in different section of intestine was dramatically enhanced in half replacement of aureomycin with Ba. Moreover, Ba replacement maintained the intestinal integrity with the significantly decreased activity of DAO compared with aureomycin group. Besides, supplementation with Ba increased the β-diversity of intestinal microbiota. Taken together, the current study indicated that diet supplementation with Ba instead of aureomycin increased the growth performance of piglets by improving the digestive and absorb enzyme activities, enhancing the intestinal integrity and regulating the population of intestinal micrbiota

    Multimodal magnetic resonance imaging on brain structure and function changes in subjective cognitive decline: a mini-review

    Get PDF
    Subjective cognitive decline (SCD) is the initial stage of Alzheimer’s disease (AD). Early identification of SCD and its risk factors is of great importance for targeted interventions and for delaying the onset of AD. We reviewed the relevant literature on structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), and other techniques regarding SCD research in recent years. This study applied sMRI and fMRI techniques to explore abnormal brain structures and functions, which may help provide a basis for SCD diagnosis

    Multimodal magnetic resonance imaging on brain structure and function changes in vascular cognitive impairment without dementia

    Get PDF
    Vascular cognitive impairment not dementia (VCIND) is one of the three subtypes of vascular cognitive impairment (VCI), with cognitive dysfunction and symptoms ranging between normal cognitive function and vascular dementia. The specific mechanisms underlying VCIND are still not fully understood, and there is a lack of specific diagnostic markers in clinical practice. With the rapid development of magnetic resonance imaging (MRI) technology, structural MRI (sMRI) and functional MRI (fMRI) have become effective methods for exploring the neurobiological mechanisms of VCIND and have made continuous progress. This article provides a comprehensive overview of the research progress in VCIND using multimodal MRI, including sMRI, diffusion tensor imaging, resting-state fMRI, and magnetic resonance spectroscopy. By integrating findings from these multiple modalities, this study presents a novel perspective on the neuropathological mechanisms underlying VCIND. It not only highlights the importance of multimodal MRI in unraveling the complex nature of VCIND but also lays the foundation for future research examining the relationship between brain structure, function, and cognitive impairment in VCIND. These new perspectives and strategies ultimately hold the potential to contribute to the development of more effective diagnostic tools and therapeutic interventions for VCIND

    The TIP30 Protein Complex, Arachidonic Acid and Coenzyme A Are Required for Vesicle Membrane Fusion

    Get PDF
    Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4) and Endophilin B1 (Endo B1) that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H+)-ATPases (V-ATPases) to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA), producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes

    Identification and characterisation of tetratricopeptide repeat protein 9

    No full text
    258 p.Breast cancer is second only to lung cancer as the leading cause of cancer death among women. Steroid hormones, such as estrogen and progesterone, are important factors in the regulation of normal female reproductive function and the tumor development. Studies on steroid hormone regulated genes will provide information on the functioning mechanism of steroid hormone action, and will assist in understanding the mechanism of breast cancer development.DOCTOR OF PHILOSOPHY (SBS

    A Maximum Power Point Tracking Algorithm of Load Current Maximization-Perturbation and Observation Method with Variable Step Size

    No full text
    A photovoltaic power supply with a simple structure and high tracking efficiency is needed in self-powered, wireless sensor networks. First, a maximum power point tracking (MPPT) algorithm, including the load current maximization-perturbation and observation (LCM-P&amp;O) methods, with a fixed step size, is proposed by integrating the traditional load current maximization (LCM) method and perturbation and observation (P&amp;O) method. By sampling the changes of load current and photovoltaic cell input current once the disturbance is applied, the pulse width modulation (PWM) regulation mode, i.e., increasing or reducing, can be determined in the next process. Then, the above algorithm is improved by using the variable step size strategy. By comparing the difference between the absolute value of the observed current value and the theoretical current value at the maximum power point of the photovoltaic cell with the set threshold value, the variable step size for perturbation is determined. MATLAB simulation results show that the LCM-P&amp;O method, with a variable step size, has faster convergence speed and higher tracking accuracy. Finally, the two MPPT algorithms are tested and analyzed under constant voltage source input and indoor fluorescent lamp illumination through an actual circuit, respectively. The experimental results show that the LCM-P&amp;O method with variable step size has a higher tracking efficiency, about 90%&ndash;92%, and has higher stability and lower power consumption

    Xiao Yao San against Corticosterone-Induced Stress Injury via Upregulating Glucocorticoid Receptor Reaction Element Transcriptional Activity

    No full text
    Previous studies have revealed that uncontrollable stress can impair the synaptic plasticity and firing property of hippocampal neurons, which influenced various hippocampal-dependent tasks including memory, cognition, behavior, and mood. In this work, we had investigated the effects and mechanisms of the Chinese herbal medicine Xiao Yao San (XYS) against corticosterone-induced stress injury in primary hippocampal neurons (PHN) cells. We found that XYS and RU38486 could increase cell viabilities and decrease cell apoptosis by MTT, immunofluorescence, and flow cytometry assays. In addition, we observed that XYS notably inhibited the nuclear translocation of GR and upregulated the mRNA and protein expressions levels of Caveolin-1, GR, BDNF, TrkB, and FKBP4. However, XYS downregulated the FKBP51 expressions. Furthermore, the results of the electrophoretic mobility shift assay (EMSA) and double luciferase reporter gene detection indicated that FKBP4 promotes the transcriptional activity of GR reaction element (GRE) by binding with GR, and FKBP51 processed the opposite action. The in vivo experiment also proved the functions of XYS. These results suggested that XYS showed an efficient neuroprotection against corticosterone-induced stress injury in PHN cells by upregulating GRE transcriptional activity, which should be developed as a potential candidate for treating stress injury in the future

    The local microenvironment instigates the regulation of mammary tetratricopeptide repeat domain 9A during lactation and involution through local regulation of the activity of estrogen receptor α

    No full text
    Tetratricopeptide repeat domain 9A (TTC9A) belongs to a family of TTC9 proteins. Its induction by progesterone in breast cancer cells was associated with marked growth inhibition and induction of focal adhesion. TTC9A interacts specifically with actin-binding protein tropomyosin Tm5NM-1 which stabilizes actin filament and focal adhesion. However, the function of TTC9A is still obscure. This study exploited mice model to characterize the regulation of TTC9A gene expression during mammary development and explored possible mechanisms of TTC9A gene regulation. It was demonstrated that mammary TTC9A expression is distinctively down-regulated in gland undergoing functional differentiation (lactation) and up-regulated during involution. Furthermore, TTC9A expression during lactation and involution is regulated by the factors in the local microenvironment. This is illustrated with teat sealing model in which the teat sealed glands (undergoing involution) expressed significantly higher levels of TTC9A protein and mRNA than the contralateral non-sealed lactating glands. Importantly, this local induction of TTC9A expression upon involution coincided with the re-activation of estrogen receptor α (ERα). Together with the observation that TTC9A is a direct ERα target gene, we propose that the fall and rise of TTC9A levels during lactation and involution is caused by the changes of ERα activity that is in turn regulated by the factors in the microenvironment
    corecore