3 research outputs found

    Regulation of RhoA/ROCK1 signaling pathway by miR 26b in sepsis induced acute lung injury

    Get PDF
    Purpose: To investigate the role of miR-26b in the regulation of RhoA/ ROCK1 signaling pathway in acute lung injury (ALI) caused by sepsis. Methods: Thirty male rats were randomized into sham group (SG), cecal ligation and puncture (CLP) group (CG) and miR-26b mimic group (MG). Hematoxylin and eosin (H & E) staining assay was performed to determine the pathological characteristics of rat lung tissues in each group, while enzyme-linked immunosorbent assay (ELISA) was conducted to determine TNF-α and IL-1β levels. The miR-26b expression was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR), while RhoA and Rock1 protein levels were assessed using western blotting. Results: The CG had significant lung injury in comparison with the SG. There were significant elevation in TNF-α and IL-1β levels (p < 0.05). RhoA and ROCK1 levels in lung tissue were noticeably elevated in CG (p < 0.05). After treatment, lung injury in MG was reduced in contrast to CG. The MG showed statistically significant decrease (p < 0.05) in the levels of TNF-α and IL-1β, while the lung tissue mRNA expression and the RhoA and ROCK1 expression levels were significantly reduced in MG (p < 0.05). Conclusion: The MiR-26b mimics plays an important role in the treatment of ALI induced by sepsis in rats by regulating RhoA/ROCK1 signaling pathway. Thus, the findings of this study provide a theoretical basis for clinical studies on the use of miR-26b in the therapy of sepsis

    Protective action of the ginsenoside Rh3 in a rat myocardial ischemia-reperfusion injury model by inhibition of apoptosis induced via p38 mitogen-activated protein kinase/caspase-3 signaling

    No full text
    Objective To investigate the protective effects of the ginsenoside Rh3 on rats subjected to myocardial ischemia-reperfusion (MIR) via its impact on caspase-3 and the p38 mitogen-activated protein kinase (MAPK) pathway. Methods Fifteen male Sprague-Dawley rats were randomly categorized into the MIR group (MY group, n = 5), sham surgery group (SS group, n = 5), and ginsenoside Rh3 group (GR group, n = 5). Results The MY group exhibited the largest myocardial infarctions compared with the GR and SS groups. The GR group exhibited significantly higher cell viability of cardiomyocytes and significantly decreased apoptosis compared with the MY group. Fibrils of infarcted tissue in the GR group were disordered but less swollen, with a more organized fibril orientation than those in the MY group. The GR group showed reduced p-p38 MAPK protein and caspase-3 mRNA expression levels compared with the MY and SS groups. Conclusions Rh3 significantly improved myocardial necrosis and caspase-3 levels in myocardial tissues by suppressing the p38 MAPK pathway, thereby inhibiting caspase-3 involvement in apoptosis. Thus, Rh3 was effective in inhibiting the escalated apoptotic pathway in myocardial infarction and can potentially serve as a useful therapeutic agent to rescue myocardial infarction
    corecore