345 research outputs found

    Analytical controllability of deterministic scale-free networks and Cayley trees

    Full text link
    According to the exact controllability theory, the controllability is investigated analytically for two typical types of self-similar bipartite networks, i.e., the classic deterministic scale-free networks and Cayley trees. Due to their self-similarity, the analytical results of the exact controllability are obtained, and the minimum sets of driver nodes (drivers) are also identified by elementary transformations on adjacency matrices. For these two types of undirected networks, no matter their links are unweighted or (nonzero) weighted, the controllability of networks and the configuration of drivers remain the same, showing a robustness to the link weights. These results have implications for the control of real networked systems with self-similarity.Comment: 7 pages, 4 figures, 1 table; revised manuscript; added discussion about the general case of DSFN; added 3 reference

    Global and partitioned reconstructions of undirected complex networks

    Full text link
    It is a significant challenge to predict the network topology from a small amount of dynamical observations. Different from the usual framework of the node-based reconstruction, two optimization approaches (i.e., the global and partitioned reconstructions) are proposed to infer the structure of undirected networks from dynamics. These approaches are applied to evolutionary games occurring on both homogeneous and heterogeneous networks via compressed sensing, which can more efficiently achieve higher reconstruction accuracy with relatively small amounts of data. Our approaches provide different perspectives on effectively reconstructing complex networks.Comment: 6 pages, 2 figures, 1 table; revised version; added numerical results of the PR in Table 1 and expanded Section 4; added 7 reference

    A New ZrCuSiAs-Type Superconductor: ThFeAsN

    Full text link
    We report the first nitrogen-containing iron-pnictide superconductor ThFeAsN, which is synthesized by a solid-state reaction in an evacuated container. The compound crystallizes in a ZrCuSiAs-type structure with the space group P4/nmm and lattice parameters a=4.0367(1) {\AA} and c=8.5262(2) {\AA} at 300 K. The electrical resistivity and dc magnetic susceptibility measurements indicate superconductivity at 30 K for the nominally undoped ThFeAsN.Comment: 6 pages, 4 figures, 1 tabl
    • …
    corecore