16 research outputs found

    Small-signal oscillatory stability of a grid-connected PV power generation farm affected by the increasing number of inverters in daisy-chain connection

    Get PDF
    The daisy-chain connection of inverters is one of the basic configurations of the power collecting network in a grid-connected photovoltaic (PV) power generation farm. In this study, the total impact of a cluster of M similar inverters in daisy-chain connection in the PV farm is examined in the following two aspects: 1) aggregated representation of the cluster of inverters is derived for stability study based on the dynamic equivalence. The derivation confirms the rationality of representing the cluster of inverters by an aggregated inverter connected to the external system via an equivalent reactance, which is the maximum eigenvalue of the matrix of daisy-chain connection defined in the article. 2) Analysis is conducted to indicate that the risk of oscillatory instability may be collectively induced by all the inverters in the daisy-chain connection in the cluster. This explains why the increasing number of inverters may imply the possible instability risk of a PV farm. An example of a power system with a grid-connected PV power generation farm is presented in the article to demonstrate and evaluate the analytical conclusion obtained

    Review of high voltage direct current cables

    No full text
    Increased renewable energy integration and international power trades have led to the construction and development of new HVDC transmission systems. HVDC cables, in particular, play an important role in undersea power transmission and offshore renewable energy integration having lower losses and higher reliability. In this paper, the current commercial feasibility of HVDC cables and the development of different types of HVDC cables and accessories are reviewed. The non-uniform electric field distribution caused by the applied voltage, temperature dependent conductivity, and space charge accumulation is briefly discussed. Current research in HVDC cable for higher operation voltage level and larger power capacity is also reviewed with specific focus on the methodologies of space charge suppression for XLPE extruded cable

    Model to estimate the trapping parameters of cross-linked polyethylene cable peelings of different service years and their relationships with dc breakdown strengths

    No full text
    In this study, an improved trapping/detrapping model was used to simulate the charge dynamics in cross-linked polyethylene peelings from different-year aged cables. Injection barrier of trapping parameters was estimated by the model fitted to experimental data for each type of sample. Moreover, dc breakdown tests were operated on those samples. It has been found that the dc breakdown strength of inner-layer samples is the lowest in cable sections with thicker insulation layer taken from high-voltage ac (HVAC) 220 kV service condition, whereas for the cable with thinner insulation from HVAC 110 kV, middle-layer samples have worst breakdown performance. This might be explained by the space charge issues under long-term HVAC condition. More importantly, a clear relationship between estimated model parameters, including injection barrier, trap depth and trap density, with the dc breakdown strength in each layer has been reported in this study

    Systematic analysis of the necroptosis index in pan-cancer and classification in discriminating the prognosis and immunotherapy responses of 1716 glioma patients

    Get PDF
    Necroptosis is a programmed form of necrotic cell death that serves as a host gatekeeper for defense against invasion by certain pathogens. Previous studies have uncovered the essential role of necroptosis in tumor progression and implied the potential for novel therapies targeting necroptosis. However, no comprehensive analysis of multi-omics data has been conducted to better understand the relationship between necroptosis and tumor. We developed the necroptosis index (NI) to uncover the effect of necroptosis in most cancers. NI not only correlated with clinical characteristics of multiple tumors, but also could influence drug sensitivity in glioma. Based on necroptosis-related differentially expressed genes, the consensus clustering was used to classify glioma patients into two NI subgroups. Then, we revealed NI subgroup I were more sensitive to immunotherapy, particularly anti-PD1 therapy. This new NI-based classification may have prospective predictive factors for prognosis and guide physicians in prioritizing immunotherapy for potential responders

    Review of high voltage direct current cables

    No full text
    Increased renewable energy integration and international power trades have led to the construction and development of new HVDC transmission systems. HVDC cables, in particular, play an important role in undersea power transmission and offshore renewable energy integration having lower losses and higher reliability. In this paper, the current commercial feasibility of HVDC cables and the development of different types of HVDC cables and accessories are reviewed. The non-uniform electric field distribution caused by the applied voltage, temperature dependent conductivity, and space charge accumulation is briefly discussed. Current research in HVDC cable for higher operation voltage level and larger power capacity is also reviewed with specific focus on the methodologies of space charge suppression for XLPE extruded cable

    Model to estimate the trapping parameters of cross-linked polyethylene cable peelings of different service years and their relationships with dc breakdown strengths

    No full text
    In this study, an improved trapping/detrapping model was used to simulate the charge dynamics in cross-linked polyethylene peelings from different-year aged cables. Injection barrier of trapping parameters was estimated by the model fitted to experimental data for each type of sample. Moreover, dc breakdown tests were operated on those samples. It has been found that the dc breakdown strength of inner-layer samples is the lowest in cable sections with thicker insulation layer taken from high-voltage ac (HVAC) 220 kV service condition, whereas for the cable with thinner insulation from HVAC 110 kV, middle-layer samples have worst breakdown performance. This might be explained by the space charge issues under long-term HVAC condition. More importantly, a clear relationship between estimated model parameters, including injection barrier, trap depth and trap density, with the dc breakdown strength in each layer has been reported in this study

    Research on overvoltage for XLPE cable in a modular multilevel converter HVDC transmission system

    No full text
    Due to the rapid development of the voltage-source converter (VSC), the demands for HVDC cables have increased significantly. Although more than ten VSC-HVDC projects are under construction and many more are in operations globally, the testing criteria for HVDC XLPE cables are mainly referenced to test guideline TB 496 recommended by CIGRE. Due to the large stray capacitance of the VSC-HVDC cables, the switching impulse overvoltage stress of the cables is the main electrical parameter concerned, a unified overvoltage factor of 2.1 p.u. being generally accepted. However, the switching impulse overvoltage stress of a VSC-HVDC cable system depends on not only the VSC topology but also the cable parameters and the volt-ampere characteristics of the dc cable surge arresters used. This paper studies the switching impulse overvoltage stresses for the dc cable system of a symmetrical monopole VSC-HVDC transmission system using the modular multilevel converter technology. The studies were performed according to the key technical parameters for a typical 1000-MW/320-kV VSC-HVDC transmission scheme, the XLPE dc cable links being assumed. The results show that a switching impulse overvoltage level of 2.3 p.u. should be applied during the type test of the overvoltage capability of the HVDC cables

    Data recovery algorithm in space charge measurement by PEA method

    No full text
    Purpose – The pulsed electro-acoustic method is widely applied for space charge measurement in solid dielectrics. The signals, however, can be seriously distorted during transmission, especially in non-planar specimens. The purpose of this paper is to find an efficient algorithm to correctly recover the space charge profile for different types of specimens.Design/methodology/approach – The distortion can be associated with both geometry and material (attenuation and dispersion). Hence the recovery algorithm consists of two parts, respectively. The influences of geometries, causing the divergences of electric force and acoustic waveform, can be corrected by sets of factors. The attenuation and dispersion of the material can be suppressed based on the transfer function matrix in frequency domain, which could be obtained from calibration.Findings – A general algorithm applicable to three kinds of specimens (single-layer, multi-layer and coaxial-geometry dielectrics) has been proposed. Compared with the other two algorithms in literature, the present one offers the most accurate solution while taking relatively shorter time. In addition, this algorithm is applied on signals measured from a planar low-density polyethylene sample and the results show that the new algorithm is fairly effective with excellent stability in a real system.Originality/value – As one of the most accurate algorithms, the present one is theoretically one-third quicker than the others. This algorithm would be helpful in applications calling for large calculations, i.e. 3D imaging of space charge distribution in XLPE cable
    corecore