27,300 research outputs found

    Achieving Effective Innovation Based On TRIZ Technological Evolution

    Get PDF
    Organised by: Cranfield UniversityThis paper outlines the conception of effective innovation and discusses the method to achieve it. Effective Innovation is constrained on the path of technological evolution so that the corresponding path must be detected before conceptual design of the product. The process of products technological evolution is a technical developing process that the products approach to Ideal Final Result (IFR). During the process, the sustaining innovation and disruptive innovation carry on alternately. By researching and forecasting potential techniques using TRIZ technological evolution theory, the effective innovation can be achieved finally.Mori Seiki – The Machine Tool Compan

    Fluctuations of Spatial Patterns as a Measure of Classical Chaos

    Get PDF
    In problems where the temporal evolution of a nonlinear system cannot be followed, a method for studying the fluctuations of spatial patterns has been developed. That method is applied to well-known problems in deterministic chaos (the logistic map and the Lorenz model) to check its effectiveness in characterizing the dynamical behaviors. It is found that the indices ÎĽq\mu _q are as useful as the Lyapunov exponents in providing a quantitative measure of chaos.Comment: 10 pages + 7 figures (in ps file), LaTex, Submitted to Phys. Rev.

    Critical Behavior of Hadronic Fluctuations and the Effect of Final-State Randomization

    Get PDF
    The critical behaviors of quark-hadron phase transition are explored by use of the Ising model adapted for hadron production. Various measures involving the fluctuations of the produced hadrons in bins of various sizes are examined with the aim of quantifying the clustering properties that are universal features of all critical phenomena. Some of the measures involve wavelet analysis. Two of the measures are found to exhibit the canonical power-law behavior near the critical temperature. The effect of final-state randomization is studied by requiring the produced particles to take random walks in the transverse plane. It is demonstrated that for the measures considered the dependence on the randomization process is weak. Since temperature is not a directly measurable variable, the average hadronic density of a portion of each event is used as the control variable that is measurable. The event-to-event fluctuations are taken into account in the study of the dependence of the chosen measures on that control variable. Phenomenologically verifiable critical behaviors are found and are proposed for use as a signature of quark-hadron phase transition in relativistic heavy-ion collisions.Comment: 17 pages (Latex) + 24 figures (ps file), submitted to Phys. Rev.

    Crossover from a pseudogap state to a superconducting state

    Full text link
    On the basis of our calculation we deduce that the particular electronic structure of cuprate superconductors confines Cooper pairs to be firstly formed in the antinodal region which is far from the Fermi surface, and these pairs are incoherent and result in the pseudogap state. With the change of doping or temperature, some pairs are formed in the nodal region which locates the Fermi surface, and these pairs are coherent and lead to superconductivity. Thus the coexistence of the pseudogap and the superconducting gap is explained when the two kinds of gaps are not all on the Fermi surface. It is also shown that the symmetry of the pseudogap and the superconducting gap are determined by the electronic structure, and non-s wave symmetry gap favors the high-temperature superconductivity. Why the high-temperature superconductivity occurs in the metal region near the Mott metal-insulator transition is also explained.Comment: 7 pages, 2 figure

    Fluence dependent femtosecond quasi-particle and Eu^{2+} -spin relaxation dynamics in EuFe_{2}(As,P)_{2}

    Get PDF
    We investigated temperature and fluence dependent dynamics of the time resolved optical reflectivity in undoped spin-density-wave (SDW) and doped superconducting (SC) EuFe2_{2}(As,P)2_{2} with emphasis on the ordered Eu2+^{2+}-spin temperature region. The data indicate that the SDW order coexists at low temperature with the SC and Eu2+^{2+}-ferromagnetic order. Increasing the excitation fluence leads to a thermal suppression of the Eu2+^{2+}-spin order due to the crystal-lattice heating while the SDW order is suppressed nonthermally at a higher fluence
    • …
    corecore