5 research outputs found

    The Evolution of Primate Short-Term Memory.

    Get PDF
    Short-term memory is implicated in a range of cognitive abilities and is critical for understanding primate cognitive evolution. To investigate the effects of phylogeny, ecology and sociality on short-term memory, we tested the largest and most diverse primate sample to date (421 non-human primates across 41 species) in an experimental delayed-response task. Our results confirm previous findings that longer delays decrease memory performance across species and taxa. Our analyses demonstrate a considerable contribution of phylogeny over ecological and social factors on the distribution of short-term memory performance in primates; closely related species had more similar short-term memory abilities. Overall, individuals in the branch of Hominoidea performed better compared to Cercopithecoidea, who in turn performed above Platyrrhini and Strepsirrhini. Interdependencies between phylogeny and socioecology of a given species presented an obstacle to disentangling the effects of each of these factors on the evolution of short-term memory capacity. However, this study offers an important step forward in understanding the interspecies and individual variation in short-term memory ability by providing the first phylogenetic reconstruction of this trait’s evolutionary history. The dataset constitutes a unique resource for studying the evolution of primate cognition and the role of short-term memory in other cognitive abilities.info:eu-repo/semantics/publishedVersio

    The Evolution of Primate Short-Term Memory

    Get PDF
    Short-term memory is implicated in a range of cognitive abilities and is critical for understanding primate cognitive evolution. To investigate the effects of phylogeny, ecology and sociality on short-term memory, we tested the largest and most diverse primate sample to date (421 non-human primates across 41 species) in an experimental delayed-response task. Our results confirm previous findings that longer delays decrease memory performance across species and taxa. Our analyses demonstrate a considerable contribution of phylogeny over ecological and social factors on the distribution of short-term memory performance in primates; closely related species had more similar short-term memory abilities. Overall, individuals in the branch of Hominoidea performed better compared to Cercopithecoidea, who in turn performed above Platyrrhini and Strepsirrhini. Interdependencies between phylogeny and socioecology of a given species presented an obstacle to disentangling the effects of each of these factors on the evolution of short-term memory capacity. However, this study offers an important step forward in understanding the interspecies and individual variation in short-term memory ability by providing the first phylogenetic reconstruction of this trait’s evolutionary history. The dataset constitutes a unique resource for studying the evolution of primate cognition and the role of short-term memory in other cognitive abilities

    Improved joint prediction strategy for state of charge and peak power of lithium-ion batteries by considering hysteresis characteristics-current measurement deviation correction.

    No full text
    The peak power and state of charge of lithium-ion batteries are closely related to the safety of electric vehicles. Accurate peak power and state of charge prediction can extend battery life while ensuring safe driving. In this paper, a modeling strategy for the joint estimation of the battery state of charge and peak power is proposed to consider the effect of current measurement deviation. First, a modified Thevenin model of the battery considering the internal polarization reaction process and the open-circuit voltage hysteresis effect is developed to improve the physical significance of the parameter identification results. On this basis, a current measurement deviation correction strategy based on the double-layer forgetting factor recursive least squares algorithm is proposed. To solve the nonlinearity and noise disturbance problems of the battery system, an Unscented Kalman filter-based multi-parameter constrained adaptive dynamic state observer is developed and used for the joint estimation of the state of charge and peak power. In particular, multiple parameters such as current, voltage, and state of charge are selected for the prediction of the battery peak power. Experimental results for different complex dynamic conditions at different temperatures show the excellent performance of the proposed modeling method in predicting the validity and accuracy verification of the state of charge and peak power. The proposed method provides a viable theoretical basis for the manufacturing technology of advanced battery management systems
    corecore