79 research outputs found

    Caractérisation par méthodes nucléaires avancées de boîtes quantiques d'In(Ga)As épitaxiées sur silicium

    Get PDF
    L intégration de semiconducteurs III-V à gap direct sur silicium est un enjeu de taille pour le développement de l optoélectronique. En effet, si le silicium est aujourd hui à la base de la microélectronique, la nature indirecte de son gap en fait un très mauvais émetteur de lumière. Parmi les matériaux candidats à l intégration, l In(Ga)As présente l avantage d un gap direct plus faible que le silicium, favorisant un comportement de puits de potentiel pour les paires électrons-trous. En revanche, le fort désaccord paramétrique entre les deux matériaux fait de la croissance épitaxiale d In(Ga)As sur silicium un sérieux défi pour le physicien. Cette thèse est focalisée sur l étude par faisceaux d ions de boîtes quantiques (BQs) d In(Ga)As épitaxiées sur silicium et de leur encapsulation ultérieure par du silicium. L analyse par rétrodiffusion élastique à haute énergie (RBS) a permis de quantifier la composition des îlots d In(Ga)As et de la couche cap de Si. Des phénomènes d exo-diffusion d indium et la présence d espèces en excès ont été mis en évidence. En pratiquant l analyse en géométrie de canalisation (RBS-C), nous avons pu caractériser l épitaxie des BQs sur le substrat ainsi que celle de la couche cap. La deuxième technique utilisée dans ce travail est l analyse par rétrodiffusion élastique à moyenne énergie (MEIS), qui permet de profiler composition, défauts cristallins, et déformation avec une résolution sub-nanométrique au voisinage de la surface de la cible. Les spectres MEIS en modes aléatoire et canalisé ont permis d obtenir le profil de composition et de défauts du plan de BQs. Enfin, la déformation du cristal d In(Ga)As par rapport au monocristal de silicium du substrat a été étudiée grâce à l effet de blocage du flux d ions rétrodiffusés qui permet d observer les ombres des axes et des plans cristallographiques.The integration on silicon of direct band gap materials such as some semiconductors from the III-V group is of a rising interest for tomorrow's optoelectronic devices. Although silicon is the raw material for many microelectronic devices, it has a poor light emitting efficiency due to his indirect band gap. Among the III-V family, the In(Ga)As compounds present the advantage of a smaller band gap than silicon, which encourage the confinement of electron-hole pairs. However, the large lattice mismatch between silicon and In(Ga)As is a serious limitation for the epitaxial integration. This PhD work has been focused on the ion beam study of In(Ga)As quantum dots (QDs) grown by epitaxy on silicon and of the QD capping by silicon. Rutherford Backscattering Spectrometry (RBS) has been used to quantify composition of both QDs and cap layer. Exo-diffusion and excess issues of some elements have been pointed out. The epitaxial relation between QDs and substrate have been investigated by ion channelling (RBS-C). Medium Energy Ion Scattering (MEIS) has also been used to obtain high resolution profiles of composition, defects and strain for both the QD plane and the capping layer. Direct space mapping of both crystals has also been achieved by MEIS thanks to the blocking effect.VILLEURBANNE-DOC'INSA-Bib. elec. (692669901) / SudocSudocFranceF

    Improved Annealing Process for 6H-SiC p<sup>+</sup>-n Junction Creation by Al Implantation

    Get PDF
    International audienceFive-fold Al implantations at both room temperature and 300°C ranging from 25 keV to 300 keV and a total fluence of 1.75x10 15 cm-2 , have been performed in 6H-SiC epilayers to create p +-n junctions. The samples have been annealed at 1700°C during 30 mn in an inductively heated furnace especially configured. Surface effects, recrystallization, dopant distribution and electrical activation are investigated by XPS, RBS, SIMS and sheet resistance measurements. For both RT and 300°C-implanted samples, good recrystallization and surface stoichiometry are found as well as no dopant loosing and an interesting electrical activation (46% and 99%, respectively). Introduction p +-n junctions in SiC power devices must be realized by ion implantation due to very low diffusion coefficients of dopants in silicon carbide. SiC high density and its structural crystallinity involve a delicate post-implantation annealing. The implantation temperature, annealing environment, time and temperature of annealing and the heating rate are the essential parameters to reorder the crystal damage induced by ion implantation and to activate the dopants by migrating in SiC atomic sites. Initially, after ion implantation, almost all Al dopants are distributed in interstitial sites, where they are not electrically active. We utilized a JIPELEC TM rf induction furnace. This technique of annealing has significant advantages such as the very high rising slope in temperature and the very localized zone of heating (the susceptor). But this one implies high temperature variations, vertically in the enclosure and laterally on the surface of the SiC wafers. These temperature gradients may cause an etching of, or a layer deposition on the SiC surface. Moreover, Si is known to volatilize towards 1400°C at one atmosphere pressure, and in lack of a Si supersaturating vapor the carbonization of the surface is inevitable. This paper presents the results of an optimized thermal rf annealing, which avoids these problems

    Improved Annealing Process for 6H-SiC p<sup>+</sup>-n Junction Creation by Al Implantation

    Get PDF
    International audienceFive-fold Al implantations at both room temperature and 300°C ranging from 25 keV to 300 keV and a total fluence of 1.75x10 15 cm-2 , have been performed in 6H-SiC epilayers to create p +-n junctions. The samples have been annealed at 1700°C during 30 mn in an inductively heated furnace especially configured. Surface effects, recrystallization, dopant distribution and electrical activation are investigated by XPS, RBS, SIMS and sheet resistance measurements. For both RT and 300°C-implanted samples, good recrystallization and surface stoichiometry are found as well as no dopant loosing and an interesting electrical activation (46% and 99%, respectively). Introduction p +-n junctions in SiC power devices must be realized by ion implantation due to very low diffusion coefficients of dopants in silicon carbide. SiC high density and its structural crystallinity involve a delicate post-implantation annealing. The implantation temperature, annealing environment, time and temperature of annealing and the heating rate are the essential parameters to reorder the crystal damage induced by ion implantation and to activate the dopants by migrating in SiC atomic sites. Initially, after ion implantation, almost all Al dopants are distributed in interstitial sites, where they are not electrically active. We utilized a JIPELEC TM rf induction furnace. This technique of annealing has significant advantages such as the very high rising slope in temperature and the very localized zone of heating (the susceptor). But this one implies high temperature variations, vertically in the enclosure and laterally on the surface of the SiC wafers. These temperature gradients may cause an etching of, or a layer deposition on the SiC surface. Moreover, Si is known to volatilize towards 1400°C at one atmosphere pressure, and in lack of a Si supersaturating vapor the carbonization of the surface is inevitable. This paper presents the results of an optimized thermal rf annealing, which avoids these problems

    Poisson ratio and bulk lattice constant of (Sr 0.25 La 0.75 )CrO 3 from strained epitaxial thin films

    Get PDF
    International audienceAbout 30 nm thick (001)-oriented (Sr0.25La0.75)CrO3 (SLCO) epitaxial thin films were grown by solid-source oxide molecular beam epitaxy on four different single-crystalline cubic or pseudo-cubic (001)-oriented oxide substrates: LaAlO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, SrTiO3 and DyScO3, which result in lattice mismatch ranging from-2% to +1.7%. All the films are of high-quality, flat and strained by the substrates. By assessing the evolution of the out-of-plane lattice parameter as a function of the in-plane lattice parameter of the samples, we determine both the Poisson ratio (ν = 0.32) and the bulk lattice constant (ab = 3.876 Å) of SLCO. The Poisson ratio significantly differs from LaCrO3 (ν = 0.23) and the (SrxLa1-x)CrO3 solid solution appears to obey structural Vegard's law. Since SLCO is the only one p-type transparent conductive oxide of perovskite structure and has promising thermoelectric properties, integrating SLCO in heterostructures and devices is therefore of paramount importance, which confers on our results their strong interest. Besides, the method used here can be straightforwardly applied to other complex oxides

    YAG nano-light sources with high Ce concentration

    Full text link
    We investigate the luminescence properties of 10 nm YAG nanoparticles doped with Ce ions at 0.2%, 4% and 13% that are designed as active probes for Scanning Near field Optical Microscopy. They are produced by a physical method without any subsequent treatment, which is imposed by the desired application. The structural analysis reveals the amorphous nature of the particles, which we relate to some compositional defect as indicated by the elemental analysis. The optimum emission is obtained with a doping level of 4%. The emission of the YAG nanoparticles doped at 0.2% is strongly perturbed by the crystalline disorder whereas the 13% doped particles hardly exhibit any luminescence. In the latter case, the presence of Ce4+ ions is confirmed, indicating that the Ce concentration is too high to be incorporated efficiently in YAG nanoparticles in the trivalent state. By a unique procedure combining cathodoluminescence and Rutherford backscattering spectrometry, we demonstrate that the enhancement of the particles luminescence yield is not proportional to the doping concentration, the emission enhancement being larger than the Ce concentration increase. Time-resolved photoluminescence reveals the presence of quenching centres likely related to the crystalline disorder as well as the presence of two distinct Ce ions populations. Eventually, nano-cathodoluminescence indicates that the emission and therefore the distribution of the doping Ce ions and of the defects are homogeneous

    Contribution de l'analyse RBS pour la caractérisation de couches minces PVD-PCVD utilisées dans des applications mécaniques

    No full text
    27-30 Sept. 2016International audienceno abstrac

    Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics

    No full text
    International audienceIn the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle 160)4 heated to temperatures ranging between 40 and 70 C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V-2/3 and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop s higher surface to volume ratio in the CCR mode. (C) 2014 Elsevier Inc. All rights reserved

    Structural investigation of silicon after ion-implantation using combined x-ray scattering methods

    No full text
    L'implantation ionique à très basse énergie (< 5keV) dans le silicium est utilisée pour la production de transistors CMOS. Les défauts présents dans le Si après implantation et recuit jouent un rôle crucial pour les performances du dispositif et, de ce fait, leur caractérisation structurale est fondamentale. Dans ce travail, je vais montrer que la combinaison de différentes techniques de diffusion de rayons X est une méthode puissante et non destructive pour réaliser ce but. La diffraction de rayons X révèle la distribution en profondeur de la contrainte dans le cristal de Si et la réflectivité spéculaire le profil de la densité électronique. La diffusion diffuse à incidence rasante (GI-DXS) permet de distinguer les défauts ponctuels des défauts étendus avec une résolution en profondeur. En raison du faible signal des défauts, l'utilisation du rayonnement synchrotron est nécessaire. GI-DXS est particulièrement adaptée à la caractérisation des défauts de fin de parcoursLYON1-BU.Sciences (692662101) / SudocSudocFranceF

    Anisotropy in FeCo nanoparticles, a first step

    No full text
    International audienceIn this article, we study the intrinsic magnetic properties of diluted FeCo clusters nanoparticles embedded in an inert amorphous carbon matrix. We report an enhancement of the magnetic anisotropy energy (MAE) after annealing demonstrated by superconducting quantum interference device (SQUID) measurements and adjustments. Rutherford backscattering spectrometry (RBS) was used to quantify the sample stoichiometry and concentration
    • …
    corecore