1,616 research outputs found
Direct Numerical Simulation of a Temporally Evolving Incompressible Plane Wake: Effect of Initial Conditions on Evolution and Topology
Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg
Nanometer-scale sharpness in corner-overgrown heterostructures
A corner-overgrown GaAs/AlGaAs heterostructure is investigated with
transmission and scanning transmission electron microscopy, demonstrating
self-limiting growth of an extremely sharp corner profile of 3.5 nm width. In
the AlGaAs layers we observe self-ordered diagonal stripes, precipitating
exactly at the corner, which are regions of increased Al content measured by an
XEDS analysis. A quantitative model for self-limited growth is adapted to the
present case of faceted MBE growth, and the corner sharpness is discussed in
relation to quantum confined structures. We note that MBE corner overgrowth
maintains nm-sharpness even after microns of growth, allowing the realization
of corner-shaped nanostructures.Comment: 4 pages, 3 figure
Direct Numerical Simulation of Incompressible Pipe Flow Using a B-Spline Spectral Method
A numerical method based on b-spline polynomials was developed to study incompressible flows in cylindrical geometries. A b-spline method has the advantages of possessing spectral accuracy and the flexibility of standard finite element methods. Using this method it was possible to ensure regularity of the solution near the origin, i.e. smoothness and boundedness. Because b-splines have compact support, it is also possible to remove b-splines near the center to alleviate the constraint placed on the time step by an overly fine grid. Using the natural periodicity in the azimuthal direction and approximating the streamwise direction as periodic, so-called time evolving flow, greatly reduced the cost and complexity of the computations. A direct numerical simulation of pipe flow was carried out using the method described above at a Reynolds number of 5600 based on diameter and bulk velocity. General knowledge of pipe flow and the availability of experimental measurements make pipe flow the ideal test case with which to validate the numerical method. Results indicated that high flatness levels of the radial component of velocity in the near wall region are physical; regions of high radial velocity were detected and appear to be related to high speed streaks in the boundary layer. Budgets of Reynolds stress transport equations showed close similarity with those of channel flow. However contrary to channel flow, the log layer of pipe flow is not homogeneous for the present Reynolds number. A topological method based on a classification of the invariants of the velocity gradient tensor was used. Plotting iso-surfaces of the discriminant of the invariants proved to be a good method for identifying vortical eddies in the flow field
Full Causal Bulk Viscous Cosmologies with time-varying Constants
We study the evolution of a flat Friedmann-Robertson-Walker Universe, filled
with a bulk viscous cosmological fluid, in the presence of time varying
``constants''. The dimensional analysis of the model suggests a proportionality
between the bulk viscous pressure of the dissipative fluid and the energy
density. On using this assumption and with the choice of the standard equations
of state for the bulk viscosity coefficient, temperature and relaxation time,
the general solution of the field equations can be obtained, with all physical
parameters having a power-law time dependence. The symmetry analysis of this
model, performed by using Lie group techniques, confirms the unicity of the
solution for this functional form of the bulk viscous pressure. In order to
find another possible solution we relax the hypotheses assuming a concrete
functional dependence for the ``constants''.Comment: 28 pages, RevTeX
The Special Science Dilemma and How Culture Solves It
This is the final version of the article. It first appeared from Taylor & Francis via http://dx.doi.org/10.1080/00048402.2014.987149I argue that there is a tension between the claim that at least some kinds in the special sciences are multiply realized and the claim that the reason kinds are prized by science is that they enter into a variety of different empirical generalizations. Nevertheless, I show that this tension ceases in the case of ‘cultural homologues’–such as specific ideologies, religions, and folk wisdom. I argue that the instances of such special science kinds do have several projectable properties in common due to their shared history of reproduction, and that the social learning involved means we should also expect these kinds to be multiply realized
From Acting What’s next to Speeding Trap: Co-Evolutionary Dynamics of an Emerging Technology-Leader
JEL Classifications: O33, O53, L63[[abstract]]How does technological innovation emerge and evolve? We approach such an inquiry by synthesizing the perspectives of dynamic capabilities and co-evolutionary dynamics to portray organizational routines and multi-phase strategic renewals of an emerging technology-leader. To untangle the emergence of technological innovation, we conducted a longitudinal case study on the first and the largest dedicated semiconductor foundry, TSMC, located in the emerging economy of Taiwan. The firm-case of TSMC illustrates two unique co-evolutionary paths, that is, transforming from industry-latecomer to technology-leader and from process innovation to product innovation. We found multi-motor co-evolutionary dynamics between TSMC and the semiconductor industry, where its co-evolutionary mechanism of managed selection in its creating phase of mature process-innovation (1987-1998) has migrated to hierarchical renewal in its extending phase of advanced process-innovation (1999-2001), and then to holistic renewal in its modifying phase of product-innovation (2002-2007). During such paths, our research discovered a unique type of organizational routines, acting what’s next because TSMC has proactively searched for potential problems sooner than its competitors. However, such routines, although driving technological innovation, also lead to a unique type of success-trap, that is, speeding trap. When an emerging technology-leader fundamentally changes the industrial structures to over-specs, the growth driven by technology speeding may trap such a leader in a loop of over-exploration.[[sponsorship]]The authors are grateful to the research grant from the National Science Council (NSC) in Taiwan. The earlier manuscript of this paper was presented at the 2009 Annual Meeting of Academy of International Business (AIB) in San Diego, USA.[[notice]]補正完畢[[journaltype]]國外[[ispeerreviewed]]Y[[booktype]]紙本[[booktype]]電子版[[countrycodes]]CA
Fabrication and Assessment of 3D Printed Anatomical Models of the Lower Limb for Anatomical Teaching and Femoral Vessel Access Training in Medicine
For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial cadavers are manufactured through three-dimensional (3D) printing of patient specific radiological data sets. In this article, a simple powder based printer is made more versatile to manufacture hard bones, silicone muscles and perfusable blood vessels. The approach involves blending modern approaches (3D printing) with more ancient ones (casting and lost-wax techniques). These anatomically accurate models can augment the approach to anatomy teaching from dissection to synthesis of 3D-printed parts held together with embedded rare earth magnets. Vascular simulation is possible through application of pumps and artificial blood. The resulting arteries and veins can be cannulated and imaged with Doppler ultrasound. In some respects, 3D-printed anatomy is superior to older teaching methods because the parts are cheap, scalable, they can cover the entire age span, they can be both dissected and reassembled and the data files can be printed anywhere in the world and mass produced. Anatomical diversity can be collated as a digital repository and reprinted rather than waiting for the rare variant to appear in the dissection room. It is predicted that 3D printing will revolutionize anatomy when poly-material printing is perfected in the early 21st century. (C) 2015 American Association of Anatomists
- …