359 research outputs found
Gene expression in large pedigrees: analytic approaches.
BackgroundWe currently have the ability to quantify transcript abundance of messenger RNA (mRNA), genome-wide, using microarray technologies. Analyzing genotype, phenotype and expression data from 20 pedigrees, the members of our Genetic Analysis Workshop (GAW) 19 gene expression group published 9 papers, tackling some timely and important problems and questions. To study the complexity and interrelationships of genetics and gene expression, we used established statistical tools, developed newer statistical tools, and developed and applied extensions to these tools.MethodsTo study gene expression correlations in the pedigree members (without incorporating genotype or trait data into the analysis), 2 papers used principal components analysis, weighted gene coexpression network analysis, meta-analyses, gene enrichment analyses, and linear mixed models. To explore the relationship between genetics and gene expression, 2 papers studied expression quantitative trait locus allelic heterogeneity through conditional association analyses, and epistasis through interaction analyses. A third paper assessed the feasibility of applying allele-specific binding to filter potential regulatory single-nucleotide polymorphisms (SNPs). Analytic approaches included linear mixed models based on measured genotypes in pedigrees, permutation tests, and covariance kernels. To incorporate both genotype and phenotype data with gene expression, 4 groups employed linear mixed models, nonparametric weighted U statistics, structural equation modeling, Bayesian unified frameworks, and multiple regression.Results and discussionRegarding the analysis of pedigree data, we found that gene expression is familial, indicating that at least 1 factor for pedigree membership or multiple factors for the degree of relationship should be included in analyses, and we developed a method to adjust for familiality prior to conducting weighted co-expression gene network analysis. For SNP association and conditional analyses, we found FaST-LMM (Factored Spectrally Transformed Linear Mixed Model) and SOLAR-MGA (Sequential Oligogenic Linkage Analysis Routines -Major Gene Analysis) have similar type 1 and type 2 errors and can be used almost interchangeably. To improve the power and precision of association tests, prior knowledge of DNase-I hypersensitivity sites or other relevant biological annotations can be incorporated into the analyses. On a biological level, eQTL (expression quantitative trait loci) are genetically complex, exhibiting both allelic heterogeneity and epistasis. Including both genotype and phenotype data together with measurements of gene expression was found to be generally advantageous in terms of generating improved levels of significance and in providing more interpretable biological models.ConclusionsPedigrees can be used to conduct analyses of and enhance gene expression studies
Schizophrenia: Genome, Interrupted
Structural chromosomal variation is increasingly recognized as an important contributor to human diseases, particularly those of neurodevelopment, such as autism. A current paper makes a significant advance to schizophrenia genetics by establishing an association with rare copy number variants (CNV), which are over-represented in neurodevelopmental genes
Replication of linkage at chromosome 20p13 and identification of suggestive sex-differential risk loci for autism spectrum disorder.
BackgroundAutism spectrum disorders (ASDs) are male-biased and genetically heterogeneous. While sequencing of sporadic cases has identified de novo risk variants, the heritable genetic contribution and mechanisms driving the male bias are less understood. Here, we aimed to identify familial and sex-differential risk loci in the largest available, uniformly ascertained, densely genotyped sample of multiplex ASD families from the Autism Genetics Resource Exchange (AGRE), and to compare results with earlier findings from AGRE.MethodsFrom a total sample of 1,008 multiplex families, we performed genome-wide, non-parametric linkage analysis in a discovery sample of 847 families, and separately on subsets of families with only male, affected children (male-only, MO) or with at least one female, affected child (female-containing, FC). Loci showing evidence for suggestive linkage (logarithm of odds ≥2.2) in this discovery sample, or in previous AGRE samples, were re-evaluated in an extension study utilizing all 1,008 available families. For regions with genome-wide significant linkage signal in the discovery stage, those families not included in the corresponding discovery sample were then evaluated for independent replication of linkage. Association testing of common single nucleotide polymorphisms (SNPs) was also performed within suggestive linkage regions.ResultsWe observed an independent replication of previously observed linkage at chromosome 20p13 (P < 0.01), while loci at 6q27 and 8q13.2 showed suggestive linkage in our extended sample. Suggestive sex-differential linkage was observed at 1p31.3 (MO), 8p21.2 (FC), and 8p12 (FC) in our discovery sample, and the MO signal at 1p31.3 was supported in our expanded sample. No sex-differential signals met replication criteria, and no common SNPs were significantly associated with ASD within any identified linkage regions.ConclusionsWith few exceptions, analyses of subsets of families from the AGRE cohort identify different risk loci, consistent with extreme locus heterogeneity in ASD. Large samples appear to yield more consistent results, and sex-stratified analyses facilitate the identification of sex-differential risk loci, suggesting that linkage analyses in large cohorts are useful for identifying heritable risk loci. Additional work, such as targeted re-sequencing, is needed to identify the specific variants within these loci that are responsible for increasing ASD risk
Transcriptomic analysis of autistic brain reveals convergent molecular pathology.
Autism spectrum disorder (ASD) is a common, highly heritable neurodevelopmental condition characterized by marked genetic heterogeneity. Thus, a fundamental question is whether autism represents an aetiologically heterogeneous disorder in which the myriad genetic or environmental risk factors perturb common underlying molecular pathways in the brain. Here, we demonstrate consistent differences in transcriptome organization between autistic and normal brain by gene co-expression network analysis. Remarkably, regional patterns of gene expression that typically distinguish frontal and temporal cortex are significantly attenuated in the ASD brain, suggesting abnormalities in cortical patterning. We further identify discrete modules of co-expressed genes associated with autism: a neuronal module enriched for known autism susceptibility genes, including the neuronal specific splicing factor A2BP1 (also known as FOX1), and a module enriched for immune genes and glial markers. Using high-throughput RNA sequencing we demonstrate dysregulated splicing of A2BP1-dependent alternative exons in the ASD brain. Moreover, using a published autism genome-wide association study (GWAS) data set, we show that the neuronal module is enriched for genetically associated variants, providing independent support for the causal involvement of these genes in autism. In contrast, the immune-glial module showed no enrichment for autism GWAS signals, indicating a non-genetic aetiology for this process. Collectively, our results provide strong evidence for convergent molecular abnormalities in ASD, and implicate transcriptional and splicing dysregulation as underlying mechanisms of neuronal dysfunction in this disorder
Recommended from our members
Anatomic brain asymmetry in vervet monkeys.
Asymmetry is a prominent feature of human brains with important functional consequences. Many asymmetric traits show population bias, but little is known about the genetic and environmental sources contributing to inter-individual variance. Anatomic asymmetry has been observed in Old World monkeys, but the evidence for the direction and extent of asymmetry is equivocal and only one study has estimated the genetic contributions to inter-individual variance. In this study we characterize a range of qualitative and quantitative asymmetry measures in structural brain MRIs acquired from an extended pedigree of Old World vervet monkeys (n = 357), and implement variance component methods to estimate the proportion of trait variance attributable to genetic and environmental sources. Four of six asymmetry measures show pedigree-level bias and one of the traits has a significant heritability estimate of about 30%. We also found that environmental variables more significantly influence the width of the right compared to the left prefrontal lobe
Sequencing strategies and characterization of 721 vervet monkey genomes for future genetic analyses of medically relevant traits
Background
We report here the first genome-wide high-resolution polymorphism resource for non-human primate (NHP) association and linkage studies, constructed for the Caribbean-origin vervet monkey, or African green monkey (Chlorocebus aethiops sabaeus), one of the most widely used NHPs in biomedical research. We generated this resource by whole genome sequencing (WGS) of monkeys from the Vervet Research Colony (VRC), an NIH-supported research resource for which extensive phenotypic data are available. Results
We identified genome-wide single nucleotide polymorphisms (SNPs) by WGS of 721 members of an extended pedigree from the VRC. From high-depth WGS data we identified more than 4 million polymorphic unequivocal segregating sites; by pruning these SNPs based on heterozygosity, quality control filters, and the degree of linkage disequilibrium (LD) between SNPs, we constructed genome-wide panels suitable for genetic association (about 500,000 SNPs) and linkage analysis (about 150,000 SNPs). To further enhance the utility of these resources for linkage analysis, we used a further pruned subset of the linkage panel to generate multipoint identity by descent matrices. Conclusions
The genetic and phenotypic resources now available for the VRC and other Caribbean-origin vervets enable their use for genetic investigation of traits relevant to human diseases
Genetic variation and gene expression across multiple tissues and developmental stages in a non-human primate
By analyzing multitissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalog of expression quantitative trait loci (eQTLs) in a nonhuman primate model. This catalog contains more genome-wide significant eQTLs per sample than comparable human resources and identifies sex- and age-related expression patterns. Findings include a master regulatory locus that likely has a role in immune function and a locus regulating hippocampal long noncoding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders
- …