150 research outputs found

    Rotenone and pyruvate prevent the tert-butylhydroperoxide-induced necrosis of U937 cells and allow them to proliferate.

    Get PDF
    Exposure of U937 cells to tert-butylhydroperoxide (tB-OOH) led to cyclosporin A-sensitive mitochondrial membrane permeability transition and necrosis. Pyruvate and rotenone, which increase mitochondrial NADH via different mechanisms, prevented these responses and the cells which received these treatments proliferated with kinetics similar to those observed in untreated cells. In contrast with these results, cells rescued by cyclosporin A were unable to proliferate. Thus, mitochondrial NADH plays a pivotal role in preventing upstream events which result in the onset of mitochondrial membrane permeability transition and death in cells exposed to tB-OOH. These events appear to be critical for recovery of the ability of the cells to proliferate

    Sodium-dependent transport of ascorbic acid in U937 cell mitochondria.

    Get PDF
    U937 cells exposed to physiological concentrations of ascorbic acid (AA) accumulate the reduced form of the vitamin in the cytosol and even further in their mitochondria. In both circumstances, uptake was dependent on Na(+) -AA-cotransport, with hardly any contribution of hexose transporters, which might be recruited to transport the oxidized form of the vitamin. There was an identical linear relationship between the mitochondrial accumulation of the vitamin and the extramitochondrial AA concentration, regardless of whether detected in experiments using intact cells or isolated mitochondria. Western blot experiments revealed expression of both SVCT1 and 2 in plasma membranes, whereas SVCT2 was the only form of the transporter expressed at appreciable amounts in mitochondria. These results therefore provide the novel demonstration of SVCT2-dependent mitochondrial transport of AA and hence challenge the present view that mitochondria only take up the oxidized form of the vitamin

    Effects of L-histidine on hydrogen peroxide-induced DNA damage and cytotoxicity in cultured mammalian cells.

    Get PDF
    L-Histidine markedly increased the growth- and DNA synthesis-inhibitory effects elicited by hydrogen peroxide in cultured Chinese hamster ovary cells. DNA single-strand breakage was also higher in the presence of the amino acid and, in addition, these breaks were characterized by a slower rate of repair, compared with that of the breaks generated by the oxidant alone. In the presence of L-histidine, hydrogen peroxide also produced DNA double-strand breakage, a lesion that cannot be detected in cells treated with even exceedingly high concentrations of the oxidant alone. Data reported herein suggest that the L-histidine-mediated increase of the cytotoxic response of cultured Chinese hamster ovary cells to hydrogen peroxide may be at least partially dependent on the formation of DNA double-strand break

    Isolation and preliminary characterization of a Chinese hamster ovary cell line with high-degree resistance to hydrogen peroxide.

    Get PDF
    We have isolated and conducted preliminary characterization of a cell line derived from the Chinese hamster ovary cell line AA8, which we have designated AG8 and which is highly resistant to the cytotoxic effects of H2O2 (approximately 17-fold when the H2O2 treatment was at 37 degrees; approximately 11-fold when the H2O2 treatment was at 4 degrees). AG8 cells were moderately (but significantly; P Be+) fast neutrons. As regards their biochemical status, AG8 and AA8 cells contain similar non-protein sulfhydryl levels per milligram of protein. Catalase activity (assessed by both spectrophotometry and polarography) was significantly higher in AG8 than in AA8 cells irrespective of whether enzyme activity was expressed per 10(6) cells (approximately 3.6-fold increase) or per milligram of protein (approximately 1.6-fold increase). AG8 cells also exhibited significantly greater glutathione reductase activity than wild-type cells when the data were expressed per 10(6) cells (approximately 2.9-fold) or per milligram of protein (approximately 1.3-fold). Glutathione peroxidase activity was immeasurably low in both cell lines. The susceptibility of the two cell lines to H2O2-mediated generation of DNA single-strand breaks (as measured by alkaline elution) indicated a slightly (approximately 1.5-fold) decreased yield in the resistant AG8 cell line. The two cell lines repaired these breaks with similar kinetics. In contrast, no measurable induction of DNA double-strand breaks (as measured by pulsed-field gel electrophoresis) was apparent in either cell line after survival-curve range concentrations of H2O2. On the basis of these data, it appears that the AG8 phenotype involves two previously identified resistance mechanisms, namely an adaptive component that may or may not involve increased antioxidant capacity, and a second component that does involve increased antioxidant (primarily catalase) capacity

    Loss-of-rescue of Ryr1I4895T-related pathology by the genetic inhibition of the ER stress response mediator CHOP

    Get PDF
    RYR1 is the gene encoding the ryanodine receptor 1, a calcium release channel of the endo/sarcoplasmic reticulum. I4898T in RYR1 is one of the most common mutations that give rise to central core disease (CCD), with a variable phenotype ranging from mild to severe myopathy to lethal early-onset core-rod myopathy. Mice with the corresponding I4895T mutation in Ryr1 present mild myopathy when the mutation is heterozygous while I4895T homozygous is perinatal-lethal. Here we show that skeletal muscles of I4895T homozygous mice at birth present signs of stress of the endoplasmic reticulum (ER stress) and of the related unfolded protein response (UPR) with increased levels of the maladaptive mediators CHOP and ERO1. To gain information on the role of CHOP in the pathogenesis of RYR1I4895T-related myopathy, we generated compound Ryr1I4895T, Chop knock-out (-/-) mice. However, the genetic deletion of Chop, although it attenuates ER stress in the skeletal muscle of the newborns, does not rescue any phenotypic or functional features of Ryr1I4895T in mice: neither the perinatal-lethal phenotype nor the inability of Ryr1I4895T to respond to its agonist caffeine, but protects from ER stress-induced apoptosis. These findings suggest that genetic deletion of the ER stress response mediator CHOP is not sufficient to counteract the pathological Ryr1I4895T phenotype

    Temporal correlation of morphological and biochemical changes with the recruitment of different mechanisms of reactive oxygen species formation during human SW872 cell adipogenic differentiation

    Get PDF
    none8noHuman SW872 preadipocyte conversion to mature adipocytes is associated with time-dependent changes in differentiation markers' expression and with morphological changes accompanied by the accumulation of lipid droplets (LDs) as well as by increased mitochondriogenesis and mitochondrial membrane potential. Under identical conditions, the formation of reactive oxygen species (ROS) revealed with a general probe was significant at days 3 and 10 of differentiation and bearly detectable at day 6. NADPH oxidase (NOX)-2 activity determined with an immunocytochemical approach followed a very similar pattern. There was no evidence of mitochondrial ROS (mROS), as detected with a selective fluorescence probe, at days 3 and 6, possibly due to the triggering of the Nrf-2 antioxidant response. mROS were instead clearly detected at day 10, concomitantly with the accumulation of very large LDs, oxidation of both cardiolipin and thioredoxin 2, and decreased mitochondrial glutathione. In conclusion, the morphological and biochemical changes of differentiating SW872 cells are accompanied by the discontinuous formation of ROS derived from NOX-2, increasingly implicated in adipogenesis and adipose tissue dysfunction. In addition, mROS formation was significant only in the late phase of differentiation and was associated with mitochondrial dysfunction.openFiorani, Mara; De Matteis, Rita; Canonico, Barbara; Blandino, Giulia; Mazzoli, Alessandro; Montanari, Mariele; Guidarelli, Andrea; Cantoni, OrazioFiorani, Mara; De Matteis, Rita; Canonico, Barbara; Blandino, Giulia; Mazzoli, Alessandro; Montanari, Mariele; Guidarelli, Andrea; Cantoni, Orazi

    The circular RNA landscape in multiple sclerosis: Disease-specific associated variants and exon methylation shape circular RNA expression profile

    Get PDF
    BACKGROUND: Circular RNAs (circRNAs) are a class of non-coding RNAs increasingly emerging as crucial actors in the pathogenesis of human diseases, including autoimmune and neurological disorders as multiple sclerosis (MS). Despite several efforts, the mechanisms regulating circRNAs expression are still largely unknown and the circRNA profile and regulation in MS-relevant cell models has not been completely investigated. In this work, we aimed at exploring the global landscape of circRNA expression in MS patients, also evaluating a possible correlation with their genetic and epigenetic background. METHODS: We performed RNA-seq experiments on circRNA-enriched samples, derived from peripheral blood mononuclear cells (PBMCs) of 10 MS patients and 10 matched controls and performed differential circRNA expression. The genetic background was evaluated using array genotyping, and an expression quantitative trait loci (eQTL) analysis was carried out. RESULTS: Expression analysis revealed 166 differentially expressed circRNAs in MS patients, 125 of which are downregulated. One of the top dysregulated circRNAs, hsa_circ_0007990, derives from the PGAP3 gene, encoding a protein relevant for the control of autoimmune responses. The downregulation of this circRNA was confirmed in two independent replication cohorts, suggesting its implementation as a possible RNA-based biomarker. The eQTL analysis evidenced a significant association between 89 MS-associated loci and the expression of at least one circRNA, suggesting that MS-associated variants could impact on disease pathogenesis by altering circRNA profiles. Finally, we found a significant correlation between exon methylation and circRNA expression levels, supporting the hypothesis that epigenetic features may play an important role in the definition of the cell circRNA pool. CONCLUSION: We described the circRNA expression profile of PBMCs in MS patients, suggesting that MS-associated variants may tune the expression levels of circRNAs acting as circ-QTLs , and proposing a role for exon-based DNA methylation in regulating circRNA expression
    • …
    corecore