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Original Article 

The circular RNA landscape in multiple sclerosis: Disease-specific 
associated variants and exon methylation shape circular RNA 
expression profile 
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Eduardo Nobile-Orazio b,g, Rosanna Asselta a,b 

a Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy 
b IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy 
c Department of Translational Medicine, University of Ferrara, Italy 
d Department of Neurology, Washington University School of Medicine, St Louis, MO, USA 
e Center Haemostasis & Thrombosis, University of Ferrara, Italy 
f Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia 
g Department of Medical Biotechnology and Translational Medicine, Milan University, Milan, Italy   

A R T I C L E  I N F O   
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A B S T R A C T   

Background: Circular RNAs (circRNAs) are a class of non-coding RNAs increasingly emerging as crucial actors in 
the pathogenesis of human diseases, including autoimmune and neurological disorders as multiple sclerosis (MS). 
Despite several efforts, the mechanisms regulating circRNAs expression are still largely unknown and the 
circRNA profile and regulation in MS-relevant cell models has not been completely investigated. In this work, we 
aimed at exploring the global landscape of circRNA expression in MS patients, also evaluating a possible cor
relation with their genetic and epigenetic background. 
Methods: We performed RNA-seq experiments on circRNA-enriched samples, derived from peripheral blood 
mononuclear cells (PBMCs) of 10 MS patients and 10 matched controls and performed differential circRNA 
expression. The genetic background was evaluated using array genotyping, and an expression quantitative trait 
loci (eQTL) analysis was carried out. 
Results: Expression analysis revealed 166 differentially expressed circRNAs in MS patients, 125 of which are 
downregulated. One of the top dysregulated circRNAs, hsa_circ_0007990, derives from the PGAP3 gene, encoding 
a protein relevant for the control of autoimmune responses. The downregulation of this circRNA was confirmed 
in two independent replication cohorts, suggesting its implementation as a possible RNA-based biomarker. The 
eQTL analysis evidenced a significant association between 89 MS-associated loci and the expression of at least 
one circRNA, suggesting that MS-associated variants could impact on disease pathogenesis by altering circRNA 
profiles. Finally, we found a significant correlation between exon methylation and circRNA expression levels, 
supporting the hypothesis that epigenetic features may play an important role in the definition of the cell 
circRNA pool. 
Conclusion: We described the circRNA expression profile of PBMCs in MS patients, suggesting that MS-associated 
variants may tune the expression levels of circRNAs acting as “circ-QTLs”, and proposing a role for exon-based 
DNA methylation in regulating circRNA expression.   

* Corresponding author at: Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy. 
E-mail address: elvezia_maria.paraboschi@hunimed.eu (E.M. Paraboschi).   
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1. Introduction 

Circular RNAs (circRNAs) are a new class of non-coding RNAs 
(ncRNAs) that are characterized by a covalently closed structure (Lasda 
and Parker, 2014). Thousands of circRNAs have been detected in the 
human transcriptome, especially thanks to the advancement in bio
informatic analyses of transcriptomic data (Salzman et al., 2012; 
Memczak et al., 2013; Jeck et al., 2013). Several types of circRNAs have 
been described, such as exonic, intronic, exonic-intronic, and intergenic 
circRNAs (Ebbesen et al., 2016). Exonic circRNAs represent the most 
common class, and originate from the back-splicing (BS) process, in 
which a downstream splice-donor site is ligated to an upstream 
splice-acceptor site (Lasda and Parker, 2014). This process is promoted 
by the presence of inverted repetitive sequences, by specific binding 
sites for splicing factors in the intronic flanking regions, or by the for
mation of a lariat deriving from exon skipping (Jeck et al., 2013; Ash
wal-Fluss et al., 2014). Among their proposed functions, it has been 
demonstrated that circRNAs can act as molecular sponges for micro
RNAs (miRNAs), thus affecting the expression of their targets (Memczak 
et al., 2013; Hansen et al., 2013). Few circRNAs have been demonstrated 
to be translated through internal ribosome entry sites that allow a 
cap-independent translation (Legnini et al., 2017; Pamudurti et al., 
2017). Moreover, the BS process directly competes with pre-mRNA 
splicing (Ashwal-Fluss et al., 2014; Conn et al., 2015); therefore, the 
biogenesis of circRNAs interferes with the alternative splicing (AS) 
process, potentially inducing exon skipping from the remaining linear 
RNA or its degradation (Chen and Yang, 2015). The tight interconnec
tion between BS and AS is also supported by the following observations: 
(i) BS requires the canonical spliceosomal machinery involved in linear 
splicing (Starke et al., 2015); (ii) BS is tuned by the same trans-acting 
splicing factors (Ashwal-Fluss et al., 2014; Conn et al., 2015; Kramer 
et al., 2015); (iii) circRNAs have also been shown to bind and affect the 
function of splicing factors (Ashwal-Fluss et al., 2014; Abdelmohsen 
et al., 2017). 

Considering that circRNAs affect gene expression regulation at many 
levels, it is not surprising that they are involved in the pathogenesis and 
progression of human diseases, including cancer, cardiovascular, 
neurological, and autoimmune disorders (Han et al., 2018). Due to their 
resistance to exonuclease-mediated degradation (Cocquerelle et al., 
1993), circRNAs are highly stable in biological fluids, thus representing 
also potential biomarkers for several disorders (Maass et al., 2017). 

Multiple sclerosis (MS) is a complex autoimmune disease of the 
central nervous system characterized by demyelination, chronic 
inflammation, neuronal loss, and axonal damage (Thompson et al., 
2018). MS is classified in different clinical courses, depending on the 
severity and progression of symptoms; the most common form, 
involving 80% of patients, is the relapsing-remitting (RR) one, charac
terized by attacks followed by complete or partial remissions (Lublin 
et al., 2014). Although the pathogenic factors underlying MS remain 
largely unknown, in the last years several studies pointed to alterations 
in AS and RNA processing as new molecular mechanisms potentially 
involved in the disease (Paraboschi et al., 2015; Spurlock 3rd et al., 
2015; Hecker et al., 2019). Moreover, several AS events as well as 
non-coding RNAs have been proposed as novel RNA-based biomarkers 
for the disease (Hecker et al., 2019; D’Ambrosio et al., 2015). 

Concerning circRNAs, our group identified, for the first time, one 
dysregulated circRNA in MS patients, the GSDMB hsa_circ_0106803 
circRNA. It was shown to be upregulated in peripheral blood mono
nuclear cells (PBMCs) of 30 RR-MS patients compared to 30 healthy 
controls (Cardamone et al., 2017). Subsequently, Iparraguirre and col
leagues detected 406 differentially expressed circRNAs through a 
microarray analysis on peripheral blood leucocytes of four RR-MS pa
tients and four healthy controls; two downregulated circRNAs, both 
deriving from the ANXA2 host gene, were validated in an independent 
cohort of 20 RR-MS patients and 18 healthy controls (Iparraguirre et al., 
2017). Our group also demonstrated an enrichment of circRNAs at MS 

genome wide-associated loci, as well as a genotype-dependent regula
tion of a circRNA derived from the MS-associated STAT3 gene (Para
boschi et al., 2018). In addition to genetic variants, further mechanisms 
have been recently proposed to control circRNA expression levels, 
including epigenetic factors and regulatory networks involving long 
non-coding RNAs (lncRNAs) (Holdt et al., 2016; Ferreira et al., 2018; 
Kleaveland et al., 2018). Indeed, we recently demonstrated that the 
lncRNA MALAT1, upregulated in MS patients’ blood, was able to 
modulate the expression levels of several circRNAs (Cardamone et al., 
2019). Despite this evidence suggesting a potential involvement of 
circRNAs in MS, the complete landscape of circRNA expression in MS 
patients is still missing. 

In this work, we aimed at exploring the global landscape of circRNA 
expression in MS patients, also evaluating a possible correlation with 
their genetic and epigenetic background. 

2. Materials and methods 

2.1. Subjects 

This study was approved by local Ethical Committees and conducted 
according to the Helsinki Declaration. All subjects signed an informed 
consent. All patients were affected by RR-MS and, at the time of blood 
collection, were in the remission phase. All the healthy control subjects 
declared no familial history for autoimmune or neurodegenerative dis
eases. The main characteristics of the subjects included in the discovery 
and the replication cohorts are listed in the Supplementary Table 1. 

2.2. DNA and RNA samples 

DNA samples were extracted from peripheral blood using the 
Maxwell® RSC Blood DNA Kit (Promega, Madison, WI, USA). 

PBMCs were isolated by centrifugation on a Lympholyte Cell sepa
ration medium (Cedarlane, Burlington, Ontario, Canada) gradient and 
total RNA was extracted using the miRNeasy Mini Kit (Qiagen, Hilden, 
Germany) for the US cohorts and the EuroGold Trifast kit (Euroclone, 
Wetherby, UK) for the Italian one. 

PGAP3 hsa_circ_0007990 circRNA expression levels were measured 
by using RNAs both from a commercial panel of human tissues (Invi
trogen, Carlsbad, California, USA) (for each tissue, RNAs are pooled 
from at least 3 donors), and from sorted Th1 and Th17 cells, isolated 
from pooled buffy coats of healthy donors by using a FACSAria Cell 
Sorter (BD Biosciences, San Jose, USA). 

DNA and RNA concentrations were measured using a NanoDrop 
2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 
USA). The integrity of RNA samples (RNA quality score >8) was assessed 
by LabChip GX Touch (Perkin Elmer, Waltham, MA, USA). 

2.3. RNA sequencing 

One µg of RNA was treated with 3 units of RNase R (Epicentre, 
Madison, WI, USA) for 15 min at 37 ◦C. After phenol-chloroform puri
fication, the entire elution volume of each RNA was used for the library 
preparation, using the TruSeq Stranded Total RNA Library Prep Kit 
(Illumina, San Diego, CA, USA) and following the manufacturer’s in
structions for degraded RNA samples. Samples were sequenced using the 
NextSeq 500 platform (Illumina) to obtain 150-nt-long paired-end reads. 

2.4. RNA-seq data analysis 

CircRNAs were detected using the DCC software (Cheng et al., 2016). 
The read pairs from paired-end data were aligned both together and 
separately to the human genome (hg19) using STAR (version 2.5.2) 
(Dobin et al., 2013) and the options suggested by the software pipeline. 
Only circRNAs with at least 5 reads in 10 samples were retained; 
circRNAs mapping on mitochondrial DNA or repeat regions were 
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discarded. Once the list of circRNAs was obtained, the statistical sig
nificance was assessed using the edgeR package (Robinson et al., 2010). 
Back-splicing read counts were added to the linear gene count list as new 
genes for the normalization purpose (Dou et al., 2016), and a standard 
differential expression analysis was carried out. A difference in gene 
expression was considered significant if the unadjusted P value was 
<0.05. 

2.5. Gene ontology (GO) enrichment analysis 

Enrichment analysis for the host genes of the 166 differentially 
expressed circRNAs was performed using the “topGO” Bioconductor 
tool, the “biological processes”, the “molecular functions” database, and 
the elim algorithm. Results are presented as row p-values, because the 
parent-child relationships of GO terms are not truly independent, and 
the p-value of a GO term is therefore conditioned on the neighboring 
terms (Alexa and Rahnenfuhrer, 2016). 

2.6. Semi-quantitative real-time RT-PCR 

Random hexamers (Promega) and the Superscript-IV Reverse Tran
scriptase (Invitrogen) were used to perform first-strand cDNA synthesis, 
according to the manufacturer’s instructions. One µl of the RT reaction 
was used as template for the subsequent semi-quantitative real-time RT- 
PCR assays. 

Semi-quantitative real-time RT-PCRs were accomplished by using 
the LightCycler® 480 SYBR Green I Master mix (Roche, Basel, 
Switzerland) and a touchdown thermal protocol on a LightCycler 480 
(Roche). For circRNA expression analysis, specific divergent primer 
couples were designed and HMBS (hydroxymethylbilane synthase) was 
used as housekeeping gene for normalization. Reactions were performed 
at least in triplicate, and expression data were analyzed using the 2^ 
(-delta delta Ct) method. Normalized values were then rescaled using 
as a reference the sample characterized by the lowest expression of that 
specific gene/circRNA. The sequences of all primer couples will be 
provided upon request. 

Normality distribution of data was checked using Shapiro-Wilk test, 
and t-test or Mann-Whitney U test were accordingly performed using the 
R software (http://www.r-project.org/) (R Core Team 2018). P values 
<0.05 were considered as statistically significant. 

2.7. Array genotyping and analysis 

Genotyping was performed using the Infinium® HumanCore-24 v1.1 
BeadChip (Illumina), containing 307,342 markers spread all over the 
genome. BeadChips were scanned using the iScan platform (Illumina); 
genotype calling was performed with GenomeStudioTM V2.0 software 
(Illumina). 

Imputation was performed remotely through the Michigan Imputa
tion Server (https://imputationserver.sph.umich.edu), using the Human 
Reference Consortium (HRC) data r1.1 2016 as reference panel, the 
Eagle v.2.3 program for the phasing step, and Minimac3 as imputation 
software (Das et al., 2016; Loh et al., 2016). The imputed dataset was 
then filtered to retain only those variants with a good imputation quality 
(r2>0.3). X chromosome was omitted from this analysis. 

For the eQTL analysis, MS-associated SNPs, excluding those mapping 
in the highly complex HLA region, were retrieved from the literature 
(International Multiple Sclerosis Genetics Consortium (IMSGC), 2019). 
The analysis was performed using the FastQTL tool (Ongen et al., 2016), 
a mapping window of a 1 megabase, and the adaptive permutations 
mode. 

2.8. Sanger sequencing 

Direct sequencing was performed to genotype the rs7295386 poly
morphism in the replication cohorts, and to confirm the structure of the 

circRNAs identified by bioinformatic analyses and tested in further ex
periments. For genotyping experiments, the genomic region containing 
the variant was amplified by standard PCR reactions performed on 20 ng 
of genomic DNA by using the GoTaq DNA polymerase (Promega). For 
circRNAs, the product of the amplification derived by divergent primer 
couples was verified for the presence of the back-spliced junction. The 
sequencing reactions were prepared with the BigDye Terminator Cycle 
Sequencing Ready Reaction Kit v1.1 (Thermo Fisher Scientific) and run 
on an ABI-3500 DX Genetic Analyzer (Thermo Fisher Scientific). Primer 
sequences will be provided upon request. 

2.9. DNA methylation analyses 

The correlation between methylation level and circRNA expression 
was evaluated in Jurkat cells. In detail, methylation data were obtained 
from UCSC Genome Browser website (https://genome.ucsc.edu), 
whereas the circRNA profile in this same cell type was derived from a 
previous work (Paraboschi et al., 2018). The following method was 
applied:  

1 only the exons with available methylation data were selected 
(methylation probes localized within the exon or at a maximum 
distance of 50 nt from it). We called this set “m_exons pool”;  

2 among the “m_exons” pool, only those that were represented in the 
identified circRNAs were further retained;  

3 each circRNA was assigned a specific methylation level, derived from 
the methylation signals of its exons. If a circRNA contained more 
than one “m_exons”, then the average of the methylation levels of the 
“m_exons” was calculated;  

4 The same workflow was repeated for methylation at gene promoters 
(considering all those methylation probes localized within 500 bp 
upstream of the transcription start site). 

We hence retained only those circRNAs for which methylation data 
were available both at gene body and promoter level. The correlation 
between circRNA expression level (in terms of counts) and methylation 
level (in terms of beta values) was evaluated through a Spearman cor
relation test. The statistical analysis was performed using the R software. 

2.10. Availability of data and materials 

The RNA-seq data from this publication have been deposited in the 
GEO database (accession number: GSE161196). 

3. Results 

3.1. CircRNA expression profile in MS patients by RNA-seq 

To globally explore the landscape of circRNAs in MS, we performed 
total RNA-seq experiments on RNA extracted from PBMCs of an US 
cohort of 10 RR-MS patients and 10 healthy controls (discovery cohort); 
subjects were matched for age, gender, and geographical origin (Sup
plementary Table 1). Prior to RNA-seq library preparation, RNAs were 
treated with RNase R, with the aim of enriching the samples for resistant 
circular products. We obtained an average of 25.6 million reads per 
sample. We identified 5663 circRNAs (detected by at least 5 back-spliced 
reads in 10 samples) using the DCC software; 12 circRNAs were sus
tained by more than 500 reads. The circRNAs characterized by the 
highest number of back-spliced reads derived from the SMARCA5 and 
CSNK1G3 host genes (Fig. 1a). The majority of the detected circRNAs 
(74%) were already annotated in circBase (Glažar et al., 2014). The 
identified circRNAs were distributed on all chromosomes, with chro
mosome 1 (the largest one) containing the highest number of circRNAs 
(Fig. 1b). The majority of circRNAs map within exons, whereas only a 
small fraction of them is represented by intronic or intergenic circRNAs 
(Fig. 1c). 
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Differential expression analysis revealed 166 dysregulated circRNAs 
in RR-MS patients (P<0.05), 125 of which are downregulated (Fig. 2a 
and b and Supplementary Table 2). For the validation step, we selected 3 
circRNAs among the top dysregulated ones (having a P<0.005, an ab
solute logFC≥0.75, and supported on average by at least 8 back-spliced 
reads), deriving from PGAP3, MED13L, and SMARCC1 genes (circBase 
IDs: hsa_circ_0007990, hsa_circ_0003059, and hsa_circ_0065301, 
respectively). We designed RT-PCR assays using divergent primer cou
ples to confirm the presence of the annotated back-spliced junction by 
direct sequencing (Supplementary Fig. 1a). Semi-quantitative real-time 
RT-PCR assays, performed on the same samples that underwent RNA- 
seq, confirmed the downregulation trend detected by RNA-seq anal
ysis, although the statistical significance was reached only for the PGAP3 
circRNA (P=0.040) (Fig. 2c). The hsa_circ_0007990 circRNA consists of 
PGAP3 (Post-GPI Attachment to Proteins 3) exons 3 and 2, joined by the 
back-spliced junction, as verified by Sanger sequencing (Supplementary 
Fig. 1a). The downregulation of this circRNA was then confirmed in a US 
replication cohort including 18 RR-MS patients and 9 healthy controls 
(log2FC: -0.44, P=0.049) (Supplementary Fig. 2a) and in an indepen
dent Italian case-control cohort, including 19 RR-MS patients and 20 
healthy controls (log2FC: -0.40, P=0.0075) (Supplementary Fig. 2b). We 
also detected a broad expression of the PGAP3 circRNA in selected MS- 
relevant human tissues (Supplementary Fig. 2c). 

A GO enrichment analysis was performed on the 166 differentially 
expressed circRNAs, querying the biological processes (BP) and 

molecular functions (MF) databases (Supplementary Table 3). Interest
ingly, among the BP top hits, we observed an enrichment in immunity- 
related terms (i.e., positive regulation of innate immune response, T cell 
costimulation, stimulatory C-type lectin receptor signaling pathway), 
that could underlie a crucial deregulation of genes involved in immu
nological responses. In addition, among the MF top hits, we observed 
terms related to gene transcription and chromatin regulation (Fig. 2d). 

3.2. MS-associated SNPs influence the expression of circRNAs 

Given the differential expression of circRNAs in MS patients, and the 
demonstration of a genotype-dependent regulation of the STAT3 
circRNA (Paraboschi et al., 2018), we decided to globally explore the 
possibility that circRNAs may be modulated by MS-associated genetic 
variants. 

We genotyped the same 10 RR-MS patients and 10 healthy controls, 
chosen for the RNA-seq experiment (discovery cohort, Supplementary 
Table 1), using the Infinium® HumanCore-24 v1.1 BeadChip, containing 
307,342 markers spread all over the genome. A total of 305,441 markers 
passed the QC steps, with an average call rate of 99.57% and an average 
genotype missingness <10%. To increase the coverage of genotyping 
data, we performed an imputation step through the Michigan Imputa
tion Server, obtaining a total of 8,801,472 high-quality autosomal 
markers. Among the imputed markers, the MS-associated variants 
derived from the most recent meta-analysis of MS GWAS (International 

Fig. 1. Characteristics of the circRNAs identified in PBMCs of MS patients/healthy controls. 
(a) The figure shows the number of the back-spliced reads supporting each circRNA, distributed along chromosomes. CircRNAs are grouped according to their 
position on chromosomes (X axis) and represented as colored dots. The average number of the different back-spliced reads is reported on the Y axis. The arrows 
indicate the two circRNAs characterized by the highest number of back-spliced reads; the name of the corresponding host gene is also shown. 
(b) Distribution of circRNAs according to their chromosomal location. The number of circRNAs is reported on the Y axis. 
(c) Classification of circRNAs according to the position of their start and end (in exonic, intronic, or intergenic regions), depicted in a logarithmic scale. Exon-intron 
and exon-intergenic categories also include circRNAs whose start and end map in intronic-exonic and in intergenic-exonic regions, respectively. 
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Multiple Sclerosis Genetics Consortium (IMSGC), 2019) were selected to 
perform an expression quantitative trait loci (eQTL) analysis, aimed at 
correlating the genotypes of the variants with the expression levels of 
circRNAs. In details, we selected both genome-wide associated 
(P<10− 8) and strongly suggestive (10− 8<P<10− 5) variants, for a total of 
317 markers; 285 (89%) of these were genotyped or imputed with a 
good quality (r2>0.3) in our cohort. The genotype data of these 285 
SNPs were hence integrated with RNA-seq data using the FastQTL tool. 
The analysis evidenced a total of 89 significant eQTLs (Supplementary 
Table 4); in details, 43 SNPs were associated with the expression of one 
circRNA and 20 SNPs with the expression of at least two different 
circRNAs (Fig. 3a). The rs7295386 polymorphism is particularly inter
esting, since it affects the expression of four circRNAs, deriving from 
three different host genes (Fig. 3a). 

To validate the in-silico data, we decided to measure the expression of 
the top hit derived from the eQTL analysis, the ATF1 hsa_circ_0098746 

(whose back-spliced junction was verified by Sanger sequencing, Sup
plementary Fig. 1b), which was associated with the rs7295386 SNP. We 
performed semi-quantitative real-time RT-PCR in the US MS patients/ 
healthy controls (belonging to the discovery and replication cohort), and 
grouped the subjects according to the genotype of the rs7295386 SNP. 
We found a significant correlation between the genotype of the SNP and 
the expression of the circRNA (ANOVA P=0.0077, Fig. 3b), and we 
further confirmed this correlation also in the independent Italian repli
cation cohort (ANOVA P=0.0027, Fig. 3c). 

3.3. Methylation at gene body level is correlated with circRNA expression 

To verify whether the methylation profile could affect the expression 
level of circRNAs, we took advantage of a previous RNA-seq experiment, 
in which we analyzed the back-splicing profile of the Jurkat cell line 
(Paraboschi et al., 2018). Methylation data for the same cell type, in 

Fig. 2. CircRNA profile in MS patients. 
(a) The heat map, built using the read counts of the top dysregulated circRNAs, as calculated by the DCC software, represents the 166 differentially expressed 
circRNAs between MS cases and healthy controls. 
(b) Volcano plot representing circRNAs differentially expressed in MS patients respect to controls. Red and blue dots indicate significantly up- and downregulated 
circRNAs, respectively. The grey shades highlight significantly dysregulated circRNAs that are characterized by a log2FC≥1 or a log2FC≤-1. The arrows indicate the 
circRNAs chosen for the validation step by semi-quantitative real-time RT–PCR. 
(c) Violin plots showing the expression levels of three circRNAs derived from PGAP3 (post-GPI attachment to proteins 3), MED13L (mediator complex subunit 13 like) 
and SMARCC1 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 1) genes by semi-quantitative real-time RT–PCRs, 
using specific divergent primer couples and HMBS as housekeeping gene. Results are presented as normalized rescaled values. A table showing the log2FC as obtained 
from RNA-seq analysis and the real-time RT-PCR assays is also shown. After checking for normal distribution of data, t-tests were applied for PGAP3 and SMARCC1 
circRNAs, whereas Mann-Whitney test was performed for MED13L circRNA. *: one-tailed P<0.05; ns: not significant. 
(d) Top 25 differentially expressed GO terms for dysregulated circRNAs, identified by the “topGO” Bioconductor tool, using the “biological processes” and the 
“molecular functions” databases, ordered by elimFisher P value. The width of the dots indicates the percentage of the enriched genes out of the total number of genes 
belonging to each term. 

G. Cardamone et al.                                                                                                                                                                                                                            



Multiple Sclerosis and Related Disorders 69 (2023) 104426

6

terms of beta values, are available in the UCSC Genome Browser. We 
explored the possibility that the methylation status at gene promoter or 
gene body could be correlated with circRNA expression. The Spearman 
ranking analysis evidenced a significant positive correlation between 
circRNA levels and gene-body methylation status (P=0.0021, 
rho=0.16), whereas no correlation was observed with methylation at 
promoters (P=0.26, rho=0.06; Fig. 4a). Interestingly, a negative corre
lation was highlighted between the level of methylation at gene body 
and promoters (P=0.0090, rho=-0.14), confirming the observation that 
expressed genes display an opposite methylation profile at promoters 
compared to gene bodies (Maunakea et al., 2013; Shayevitch et al., 
2018). 

To better understand how methylation impacts on the back-splicing 
profile, we clustered circRNAs, on the basis of the methylation beta 
value, in a “low” and a “high” methylation-level group. This analysis was 
performed both for promoter and gene body methylation, setting the 
median methylation level as threshold for the assignment to a specific 
group. Concerning gene body methylation, the Wilcoxon test evidenced 
a significant difference in circRNA expression between the “low” and 
“high” methylation groups (P= 0.018, Fig. 4b), with a higher methyl
ation level associated with an increased circRNA expression (reads: 
median=9, IQR=10 vs median=7, IQR=6). No significant difference 
was instead observed in the case of methylation at promoters (P=0.29, 
reads: median=8, IQR=9 vs median=8, IQR=7, Fig. 4c). 

4. Discussion 

CircRNAs are increasingly involved in several diseases, including 
autoimmune and neurodegenerative disorders, although the molecular 
mechanisms regulating their expression are still largely unknown. 

Our previous demonstration of a dysregulated circRNA in MS pa
tients (GSDMB circRNA) (Cardamone et al., 2017) underlined the need 
to describe a complete map of circRNA expression in MS, a disease in 
which alteration of AS and RNA processing have been repeatedly re
ported (Paraboschi et al., 2015; Spurlock 3rd et al., 2015; Hecker et al., 
2019; Cardamone et al., 2019; Evsyukova et al., 2010). An attempt in 
this direction was indeed already performed by Iparraguirre et al. 
(2017), but their work suffered from the limitation of using microarrays, 
which, by design, only include probes for already known circRNAs. 
More recently, the same research group also analyzed the circRNA 
profile in MS patients’ and controls’ leucocytes by RNA-seq analysis 
(Iparraguirre et al., 2020). There was no overlap between the dysregu
lated circRNAs found in our work and the top hits listed in their 
manuscript, but different cell populations were analyzed (leucocytes, 
containing also neutrophils, and PBMCs). Additionally, other groups 
have previously analyzed the circRNA profile in PBMCs of RR-MS pa
tients (either in the relapsing or remitting phase of the disease) and 
healthy controls (Zurawska et al., 2021; Mycko et al., 2022) by 
microarray-based studies. Also in this case, however, we did not find 
overlaps between their top hits and the circRNAs described in this work, 
again possibly due to different technical approaches. Our exploratory 

Fig. 3. MS-associated SNPs regulate the formation of circRNAs. 
(a) The figure shows the number of circRNAs regulated by MS-associated SNPs, that are distributed along the chromosomes, and represented as colored dots. Only 
significant correlations are shown. The green dot indicates the most significant hit. 
(b,c) Boxplots representing the expression levels of the ATF1 hsa_circ_0098746 in the US cohort (b), and in the Italian one (c) by semi-quantitative real-time RT–PCRs, 
using specific divergent primer couples and HMBS as housekeeping gene. Results are presented as normalized rescaled values. Subjects are grouped according to the 
rs7295386 genotype. *: P<0.05. 
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RNA-seq experiment revealed 166 differentially expressed circRNAs, 
75% of which are downregulated, in line with the results obtained by 
Iparraguirre et al. in the microarray analysis (Iparraguirre et al., 2017). 
This trend towards a prevalent circRNA downregulation was also 
described in PBMCs of patients affected by another autoimmune disease, 
systemic lupus erythematosus (Liu et al., 2019). Since circRNAs are 
known to control gene expression by miRNA sponging activity, the 
observed downregulation may cause an alteration in miRNA levels, thus 
leading to microenvironmental changes possibly modulating MS 
development, as suggested by Mycko et al. (2022). 

Among the top dysregulated circRNAs, the hsa_circ_0007990 seemed 
particularly interesting, as the PGAP3 host gene encodes a protein 
shown to be relevant for the control of autoimmune responses. Indeed, it 
encodes a protein responsible for the remodeling of fatty acids of gly
cosylphosphatidylinositol (GPI)-anchors proteins; more importantly, 
PGAP3 knockout mice showed an enhanced T cell response and exac
erbate the experimental autoimmune encephalomyelitis phenotype, as 
well as several autoimmune-like symptoms (Murakami et al., 2012; 
Wang et al., 2013). We confirmed the downregulation of the PGAP3 
circRNA in the US and Italian replication cohorts, providing a possible 
novel RNA-based biomarker. Although we are aware that the number of 
patients considered in this analysis is small, the potential role as a 
diagnostic/prognostic factor, in terms of disease progression, should be 
considered, and this promising molecular marker needs to be further 
replicated in an enlarged cohort. 

Our previous observation that STAT3 hsa_circ_0043813 level was 

regulated by the genotype of an MS-associated SNP (Paraboschi et al., 
2018) prompted us to hypothesize that MS-associated variants may in
fluence the biogenesis of circRNAs. A study performed by Putscher et al. 
(2022) analyzed the effect on AS of SNPs located in genetic risk loci for 
MS, and identified a number of GWAS-associated SNPs that act as 
splice-QTLs in B lymphocytes, but only the effect on linear splicing was 
evaluated. By investigating the genetic background of all the patients 
analyzed for their circRNA profile, we indeed found 89 significant cor
relations between genotypes of MS-associated SNPs and the expression 
level of circRNAs, which might be defined as circ-QTLs. It has to be 
underlined that a total of 63 out of 285 tested SNPs were correlated with 
circRNA expression level, suggesting that about the 22% of 
genome-wide MS-associated SNPs could impact on the disease patho
genesis by altering circRNA profiles. 

Importantly, this analysis also revealed that the genotype of a SNP 
may influence the expression of multiple circRNAs, as in the case of the 
rs7295386 SNP regulating four circRNAs. In this context, Ahmed et al. 
(2019), taking advantages of the RNA-seq data of 1000 Genomes Project 
on lymphoblastoid cell lines (Lappalainen et al., 2013), found 139,485 
circ-QTLs for 2260 circRNAs, and also observed that most circ-QTLs are 
independent of eQTLs acting on gene expression and do not impact on 
the expression of the host genes. Liu et al. (2019), instead, analyzed 
human dorsolateral prefrontal cortex samples from the CommonMind 
Consortium. Interestingly, the rs7295386 appeared among the 196,255 
circ-QTLs, again being associated with the ATF1 hsa_circ_0098746, that 
was shown to be regulated by other 246 circ-QTLs. They also found that 

Fig. 4. Gene-body methylation is associated with circRNA levels. 
(a) Correlogram showing the correlation level between circRNA expression and methylation profile at gene promoters (beta promoter) or gene bodies (beta gene 
body). Circles are drawn if a significant correlation is present, their size represents the correlation level, whereas their color indicates the sign of the correlation. Rho 
values, as calculated by the Spearman rank test, are shown in each box. 
(b, c) Boxplots showing the expression of circRNAs, as log(counts), on the basis of gene-body (b) and promoter (c) methylation level, in terms of beta values. Outliers 
are presented as dots; *: p< 0.05; ns: not significant. 
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many of the most significant circ-QTLs (for each circRNA) are enriched 
within GWAS signals of several complex diseases, although their anal
ysis did not include MS. 

Besides genetic variants, we hypothesized that epigenetic features, 
such as DNA methylation, may represent a further regulatory mecha
nism to tune circRNA expression. Indeed, Ferreira et al. (2018) have 
already demonstrated that cancer-specific promoter CpG island hyper
methylation is associated with a decreased expression of both circRNAs 
and their host genes, and intragenic methylation is known to modulate 
AS (Maunakea et al., 2013; Shayevitch et al., 2018). Moreover, Xu et al. 
(2021) showed that circRNAs with differentially methylated sites were 
expressed differently in tumors versus adjacent normal samples, while 
their parental genes were not, thus hypothesizing that some aberrant 
DNA methylation events might only affect the processing of pre-mRNA 
to generate circRNAs but not the process generating linear RNAs. In our 
work, we evaluated whether DNA methylation could impact on 
back-splicing modulation in the Jurkat cell line. Our analysis, although 
indirect, evidenced the existence of a positive correlation between 
circRNA expression and methylation at gene body level, thus suggesting 
that epigenetic features may play an important role in the definition of 
the cell circRNA pool. We also analyzed publicly available DNA 
methylation data derived from peripheral blood of 98 female MS pa
tients and 104 sex-matched healthy controls (GSE106648) (Kular et al., 
2018): 36 of the genes that were differentially methylated in cases were 
also evidenced in our RNA-seq analysis as having a dysregulated 
circRNA profile. Although we cannot directly integrate the results ob
tained from these two different cohorts, this analysis further supports 
the need to explore the correlation between circRNA and methylation 
profiles to gain more insights on the regulatory features modulating 
circRNA landscape, and ultimately on disease pathogenesis. 

In conclusion, this work establishes a comprehensive profile of 
circRNA expression by RNA-seq analysis in PBMCs of MS patients, 
suggesting that a significant proportion (at least 20%) of MS-associated 
variants may influence the expression levels of circRNAs, acting as circ- 
QTLs and providing support for the role of DNA methylation in regu
lating circRNA biogenesis. 
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Triviño, T., Hansen, T.B., Muñoz-Culla, M., Otaegui, D., 2020. RNA-Seq profiling of 
leukocytes reveals a sex-dependent global circular RNA upregulation in multiple 
sclerosis and 6 candidate biomarkers. Hum. Mol. Genet. 18, 3361–3372. https://doi. 
org/10.1093/hmg/ddaa219. 

Zurawska, A.E., Mycko, M.P., Selmaj, I., Raine, C.S., Selmaj, K.W., 2021. Multiple 
sclerosis: circRNA profile defined reveals links to B-cell function. Neurol. 
Neuroimmunol. Neuroinflamm. 8, e1041. https://doi.org/10.1212/ 
NXI.0000000000001041. 

Mycko, M.P., Zurawska, A.E., Selmaj, I., Selmaj, K.W., 2022. Impact of diminished 
expression of circRNA on multiple sclerosis pathomechanisms. Front Immunol. 13, 
875994 https://doi.org/10.3389/fimmu.2022.875994. 

Liu, C.X., Li, X., Nan, F., Jiang, S., Gao, X., Guo, S.K., Xue, W., Cui, Y., Dong, K., Ding, H., 
Qu, B., Zhou, Z., Shen, N., Yang, L., Chen, L.L., 2019. Structure and degradation of 
circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880. 
https://doi.org/10.1016/j.cell.2019.03.046. 

Murakami, H., Wang, Y., Hasuwa, H., Maeda, Y., Kinoshita, T., Murakami, Y., 2012. 
Enhanced response of T lymphocytes from Pgap3 knockout mouse: Insight into roles 
of fatty acid remodeling of GPI anchored proteins. Biochem. Biophys. Res. Commun. 
427, 1235–1241. https://doi.org/10.1016/j.bbrc.2011.12.116. 

Wang, Y., Murakami, Y., Yasui, T., Wakana, S., Kikutani, H., Kinoshita, T., Maeda, Y., 
2013. Significance of glycosylphosphatidylinositol-anchored protein enrichment in 
lipid rafts for the control of autoimmunity. J. Biol. Chem. 288, 25490–25499. 
https://doi.org/10.1074/jbc.M113.492611. 

Putscher, E., Hecker, M., Fitzner, B., Boxberger, N., Schwartz, M., Koczan, D., Lorenz, P., 
Zettl, U.K., 2022. Genetic risk variants for multiple sclerosis are linked to differences 
in alternative pre-mRNA splicing. Front. Immunol. 13, 931831 https://doi.org/ 
10.3389/fimmu.2022.931831. 

Ahmed, I., Karedath, T., Al-Dasim, F.M., Malek, J.A., 2019. Identification of human 
genetic variants controlling circular RNA expression. RNA 25, 1765–1778. https:// 
doi.org/10.1261/rna.071654.119. 

Lappalainen, T., Sammeth, M., Friedländer, M.R., ’t Hoen, P.A., Monlong, J., Rivas, M.A., 
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