54 research outputs found

    Induction of heat-shock proteins does not prevent renal tubular injury following ischemia

    Get PDF
    Induction of heat-shock proteins does not prevent renal tubular injury following ischemia. The possible protective effect of heat-shock proteins (HSPs) on ischemic injury to renal cells was assessed in two different experimental models: ischemia-reflow in intact rats and medullary hypoxic injury as seen in the isolated perfused rat kidney. Heat shock was induced by raising the core temperature of rats to 42°C for 15 minutes. Following this, Northern blots showed enhanced gene expression of HSP70, HSP60 and ubiquitin at one hour and reaching a maximum by six hours after heat shock in all regions of the kidney, but most prominently in medulla and papilla. The HSP70 protein in the kidney, estimated by immunohistochemical means, was detectable 24 hours following heat shock and further increased at 48 hours following heat shock. In the first set of experiments, the animals underwent uninephrectomy followed by cross clamping of the remaining renal artery for 40 minutes prior to reflow. Serum creatinine and urea nitrogen rose to 3.15 ± 0.98 and 126.4 ± 62.5 mg/dl at 24 hours. No significant differences were observed at 24, 48 and 72 hours after reflow between these values in control rats and rats pretreated with heat shock 48 hours earlier. Severe morphological damage to proximal tubules of the renal cortex was observed to the same extent in both groups. In a second set of experiments, the right kidney was removed either 24 or 48 hours after heat shock and perfused in isolation for 90 minutes. Functional and morphological parameters were compared with those of isolated perfused kidneys obtained from animals that had not been subjected to heat shock. No difference was observed in the degree or extent of hypoxic injury to the medullary thick ascending limb, characteristically observed in the isolated perfused rat kidney, nor did prior induction of HSPs modify the progressive decline in glomerular filtration rate or fractional reabsorption of glucose seen in perfused kidneys. Fractional reabsorption of sodium was slightly higher in kidneys from rats earlier exposed to heat shock. These results do not support the hypothesis that heat shock proteins prevent ischemic renal injury

    EphA kinase activation regulates HGF-induced epithelial branching morphogenesis

    Get PDF
    Eph kinases and their ephrin ligands are widely expressed in epithelial cells in vitro and in vivo. Our results show that activation of endogenous EphA kinases in Madin-Darby canine kidney (MDCK) cells negatively regulates hepatocyte growth factor/scatter factor (HGF)–induced branching morphogenesis in collagen gel. Cotreatment with HGF and ephrin-A1 reduced sprouting of cell protrusions, an early step in branching morphogenesis. Moreover, addition of ephrin-A1 after HGF stimulation resulted in collapse and retraction of preexisting cell protrusions. In a newly developed assay that simulates the localized interactions between Ephs and ephrins in vivo, immobilized ephrin-A1 suppressed HGF-induced MDCK cell scattering. Ephrin-A1 inhibited basal ERK1/2 mitogen-activated protein kinase activity; however, the ephrin-A1 effect on cell protrusion was independent of the mitogen-activated protein kinase pathway. Ephrin-A1 suppressed HGF-induced activation of Rac1 and p21-activated kinase, whereas RhoA activation was retained, leading to the preservation of stress fibers. Moreover, dominant-negative RhoA or inhibitor of Rho-associated kinase (Y27632) substantially negated the inhibitory effects of ephrin-A1. These data suggest that interfering with c-Met signaling to Rho GTPases represents a major mechanism by which EphA kinase activation inhibits HGF-induced MDCK branching morphogenesis

    Silica suspension and coating developments for Advanced LIGO

    Get PDF
    The proposed upgrade to the LIGO detectors to form the Advanced LIGO detector system is intended to incorporate a low thermal noise monolithic fused silica final stage test mass suspension based on developments of the GEO 600 suspension design. This will include fused silica suspension elements jointed to fused silica test mass substrates, to which dielectric mirror coatings are applied. The silica fibres used for GEO 600 were pulled using a Hydrogen-Oxygen flame system. This successful system has some limitations, however, that needed to be overcome for the more demanding suspensions required for Advanced LIGO. To this end a fibre pulling machine based on a CO2 laser as the heating element is being developed in Glasgow with funding from EGO and PPARC. At the moment a significant limitation for proposed detectors like Advanced LIGO is expected to come from the thermal noise of the mirror coatings. An investigation on mechanical losses of silica/tantala coatings was carried out by several labs involved with Advanced LIGO R&D. Doping the tantala coating layer with titania was found to reduce the coating mechanical dissipation. A review of the results is given here

    Status of the GEO600 gravitational wave detector

    Get PDF
    The GEO600 laser interferometric gravitational wave detector is approaching the end of its commissioning phase which started in 1995.During a test run in January 2002 the detector was operated for 15 days in a power-recycled michelson configuration. The detector and environmental data which were acquired during this test run were used to test the data analysis code. This paper describes the subsystems of GEO600, the status of the detector by August 2002 and the plans towards the first science run

    Leptin signaling and circuits in puberty and fertility

    Full text link

    Bone marrow plasticity revisited: protection or differentiation in the kidney tubule?

    No full text
    Epithelial organs such as the intestine and skin have a relatively high rate of cell loss and thus require a reservoir of stem cells capable of both replacing the lost epithelia and maintaining the reservoir. Whether the kidney has such a stem cell niche has been a subject of great interest; the majority of data suggest that replacement of renal epithelial cells occurs via dedifferentiation and proliferation of existing tubular cells, while some studies demonstrate the presence of potential tubular stem cells in the renal interstitium. However, recent reports have suggested that the bone marrow may also be a source of stem cells for tubule turnover and/or repair. In this issue of the JCI, 2 groups explore the role of endogenous cells versus bone marrow–derived cells in mediating tubule repair. Duffield and colleagues demonstrate that bone marrow does contain cells capable of protecting the kidney from ischemic injury, but found that these cells do not act by direct incorporation into the repaired tubular segments. In contrast, Lin and coworkers found that some bone marrow–derived cells do appear to incorporate into the injured tubule as epithelial cells (see the related article beginning on page 1756). Importantly, both groups conclude that the majority of tubule repair occurs via proliferation of endogenous renal cells rather than incorporation of bone marrow–derived cells
    • …
    corecore