12 research outputs found

    Lifestyle intervention prior to IVF does not improve embryo utilization rate and cumulative live birth rate in women with obesity: a nested cohort study

    Get PDF
    Study Question: Does lifestyle intervention consisting of an energy-restricted diet, enhancement of physical activity and motivational counseling prior to IVF improve embryo utilization rate (EUR) and cumulative live birth rate (CLBR) in women with obesity? Summary Answer: A 6-month lifestyle intervention preceding IVF improved neither EUR nor CLBR in women with obesity in the first IVF treatment cycle where at least one oocyte was retrieved. What Is Known Already: A randomized controlled trial (RCT) evaluating the efficacy of a low caloric liquid formula diet (LCD) preceding IVF in women with obesity was unable to demonstrate an effect of LCD on embryo quality and live birth rate: in this study, only one fresh embryo transfer (ET) or, in case of freeze-all strategy, the first transfer with frozen-thawed embryos was reported. We hypothesized that any effect on embryo quality of a lifestyle intervention in women with obesity undergoing IVF treatment is better revealed by EUR and CLBR after transfer of all fresh and frozen-thawed embryos. Study Design, Size, Duration: This is a nested cohort study within an RCT, the LIFEstyle study. The original study examined whether a 6-month lifestyle intervention prior to infertility treatment in women with obesity improved live birth rate, compared to prompt infertility treatment within 24 months after randomization. In the original study between 2009 and 2012, 577 (three women withdrew informed consent) women with obesity and infertility were assigned to a lifestyle intervention followed by infertility treatment (n = 289) or to prompt infertility treatment (n = 285). Participants/Materials, Setting, Methods: Only participants from the LIFEstyle study who received IVF treatment were eligible for the current analysis. In total, 137 participants (n = 58 in the intervention group and n = 79 in the control group) started the first cycle. In 25 participants, the first cycle was cancelled prior to oocyte retrieval mostly due to poor response. Sixteen participants started a second or third consecutive cycle. The first cycle with successful oocyte retrieval was used for this analysis, resulting in analysis of 51 participants in the intervention group and 72 participants in the control group. Considering differences in embryo scoring methods and ET day strategy between IVF centers, we used EUR as a proxy for embryo quality. EUR was defined as the proportion of inseminated/injected oocytes per cycle that was transferred or cryopreserved as an embryo. Analysis was performed per cycle and per oocyte/embryo. CLBR was defined as the percentage of participants with at least one live birth from the first fresh and subsequent frozen-thawed ET(s). In addition, we calculated the Z-score for singleton neonatal birthweight and compared these outcomes between the two groups. Main Results and the Role Of Chance: The overall mean age was 31.6 years and the mean BMI was 35.4 ± 3.2 kg/m2 in the intervention group, and 34.9 ± 2.9 kg/m2 in the control group. The weight change at 6 months was in favor of the intervention group (mean difference in kg vs the control group: −3.14, 95% CI: −5.73 to −0.56). The median (Q25; Q75) number of oocytes retrieved was 4.00 (2.00; 8.00) in the intervention group versus 6.00 (4.00; 9.75) in the control group, and was not significantly different, as was the number of oocytes inseminated/injected (4.00 [2.00; 8.00] vs 6.00 [3.00; 8.75]), normal fertilized embryos (2.00 [0.50; 5.00] vs 3.00 [1.00; 5.00]) and the number of cryopreserved embryos (2.00 [1.25; 4.75] vs 2.00 [1.00; 4.00]). The median (Q25; Q75) EUR was 33.3% (12.5%; 60.0%) in the intervention group and 33.3% (16.7%; 50.0%) in the control group in the per cycle analysis (adjusted B: 2.7%, 95% CI: −8.6% to 14.0%). In the per oocyte/embryo analysis, in total, 280 oocytes were injected or inseminated in the intervention group, 113 were utilized (transferred or cryopreserved, EUR = 40.4%); in the control group, EUR was 30.8% (142/461). The lifestyle intervention did not significantly improve EUR (adjusted odds ratio [OR]: 1.36, 95% CI: 0.94–1.98) in the per oocyte/embryo analysis, taking into account the interdependency of the oocytes per participant. CLBR was not significantly different between the intervention group and the control group after adjusting for type of infertility (male factor and unexplained) and smoking (27.5% vs 22.2%, adjusted OR: 1.03, 95% CI: 0.43–2.47). Singleton neonatal birthweight and Z-score were not significantly different between the two groups. Limitations, Reasons for Caution: This study is a nested cohort study within an RCT, and no power calculation was performed. The randomization was not stratified for indicated treatment, and although we corrected our analyses for baseline differences, there may be residual confounding. The limited absolute weight loss and the short duration of the lifestyle intervention might be insufficient to affect EUR and CLBR. Wider Implications of the Findings: Our data do not support the hypothesis of a beneficial short-term effect of lifestyle intervention on EUR and CLBR after IVF in women with obesity, although more studies are needed as there may be a potential clinically relevant effect on EUR.Zheng Wang, Henk Groen, Koen C. Van Zomeren, Astrid E.P. Cantineau, Anne Van Oers, Aafke P.A. Van Montfoort, Walter K.H. Kuchenbecker, Marie J. Pelinck, Frank J.M. Broekmans, Nicole F. Klijn, Eugenie M. Kaaijk, Ben W.J. Mol, Annemieke Hoek, and Jannie Van Echten-Arend

    Endometrial scratching in women with one failed IVF/ICSI cycle-outcomes of a randomised controlled trial (SCRaTCH)

    Get PDF
    STUDY QUESTION: Does endometrial scratching in women with one failed IVF/ICSI treatment affect the chance of a live birth of the subsequent fresh IVF/ICSI cycle? SUMMARY ANSWER: In this study, 4.6% more live births were observed in the scratch group, with a likely certainty range between -0.7% and +9.9%. WHAT IS KNOWN ALREADY: Since the first suggestion that endometrial scratching might improve embryo implantation during IVF/ICSI, many clinical trials have been conducted. However, due to limitations in sample size and study quality, it remains unclear whether endometrial scratching improves IVF/ICSI outcomes. STUDY DESIGN, SIZE, DURATION: The SCRaTCH trial was a non-blinded randomised controlled trial in women with one unsuccessful IVF/ICSI cycle and assessed whether a single endometrial scratch using an endometrial biopsy catheter would lead to a higher live birth rate after the subsequent IVF/ICSI treatment compared to no scratch. The study took place in 8 academic and 24 general hospitals. Participants were randomised between January 2016 and July 2018 by a web-based randomisation programme. Secondary outcomes included cumulative 12-month ongoing pregnancy leading to live birth rate. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women with one previous failed IVF/ICSI treatment and planning a second fresh IVF/ICSI treatment were eligible. In total, 933 participants out of 1065 eligibles were included (participation rate 88%). MAIN RESULTS AND THE ROLE OF CHANCE: After the fresh transfer, 4.6% more live births were observed in the scratch compared to control group (110/465 versus 88/461, respectively, risk ratio (RR) 1.24 [95% CI 0.96-1.59]). These data are consistent with a true difference of between -0.7% and +9.9% (95% CI), indicating that while the largest proportion of the 95% CI is positive, scratchin

    Long-term male fertility after treatment with radioactive iodine for differentiated thyroid carcinoma

    No full text
    Context: Whilst radioactive iodine (RAI) is often administered in the treatment for differentiated thyroid carcinoma (DTC), long-term data on male fertility after RAI are scarce.Objective: To evaluate long-term male fertility after RAI for DTC, and to compare semen quality before and after RAI.Design, setting and patients: Multicenter study including males with DTC >= 2 years after their final RAI treatment with a cumulative activity of >= 3.7 GBq.Main outcome measure(s): Semen analysis, hormonal evaluation, and a fertility-focused questionnaire. Cut-off scores for 'low semen quality' were based on reference values of the general population as defined by the World Health Organization (WHO).Results: Fifty-one participants had a median age of 40.5 (interquartile range (IQR): 34.0-49.6) years upon evaluation and a median follow-up of 5.8 (IQR: 3.0-9.5) years after their last RAI administration. The median cumulative administered activity of RAI was 7.4 (range: 3.7-23.3) GBq. The proportion of males with a low semen volume, concentration, progressive motility, or total motile sperm count did not differ from the 10th percentile cut-off of a general population (P = 0.500, P = 0.131, P = 0.094, and P = 0.500, respectively). Cryopreserved semen was used by 1 participant of the 20 who had preserved semen.Conclusions: Participants had a normal long-term semen quality. The proportion of participants with low semen quality parameters scoring below the 10th percentile did not differ from the general population. Cryopreservation of semen of males with DTC is not crucial for conceiving a child after RAI administration but may be considered in individual cases.Diabetes mellitus: pathophysiological changes and therap

    Fertility preservation for women with breast cancer: a multicentre randomized controlled trial on various ovarian stimulation protocols

    Get PDF
    STUDY QUESTION Does ovarian stimulation with the addition of tamoxifen or letrozole affect the number of cumulus-oocyte complexes (COCs) retrieved compared to standard ovarian stimulation in women with breast cancer who undergo fertility preservation? SUMMARY ANSWER Alternative ovarian stimulation protocols with tamoxifen or letrozole did not affect the number of COCs retrieved at follicle aspiration in women with breast cancer. WHAT IS KNOWN ALREADY Alternative ovarian stimulation protocols have been introduced for women with breast cancer who opt for fertility preservation by means of banking of oocytes or embryos. How these ovarian stimulation protocols compare to standard ovarian stimulation in terms of COC yield is unknown. STUDY DESIGN, SIZE, DURATION This multicentre, open-label randomized controlled superiority trial was carried out in 10 hospitals in the Netherlands and 1 hospital in Belgium between January 2014 and December 2018. We randomly assigned women with breast cancer, aged 18-43 years, who opted for banking of oocytes or embryos to one of three study arms; ovarian stimulation plus tamoxifen, ovarian stimulation plus letrozole or standard ovarian stimulation. Standard ovarian stimulation included GnRH antagonist, recombinant FSH and GnRH agonist trigger. Randomization was performed with a web-based system in a 1:1:1 ratio, stratified for oral contraception usage at start of ovarian stimulation, positive estrogen receptor (ER) status and positive lymph nodes. Patients and caregivers were not blinded to the assigned treatment. The primary outcome was number of COCs retrieved at follicle aspiration. PARTICIPANTS/MATERIALS, SETTING, METHODS During the study period, 162 women were randomly assigned to one of three interventions. Fifty-four underwent ovarian stimulation plus tamoxifen, 53 ovarian stimulation plus letrozole and 55 standard ovarian stimulation. Analysis was according to intention-to-treat principle. MAIN RESULTS AND THE ROLE OF CHANCE No differences among groups were observed in the mean (+/- SD) number of COCs retrieved: 12.5 (10.4) after ovarian stimulation plus tamoxifen, 14.2 (9.4) after ovarian stimulation plus letrozole and 13.6 (11.6) after standard ovarian stimulation (mean difference -1.13, 95% CI -5.70 to 3.43 for tamoxifen versus standard ovarian stimulation and 0.58, 95% CI -4.03 to 5.20 for letrozole versus standard ovarian stimulation). After adjusting for oral contraception usage at the start of ovarian stimulation, positive ER status and positive lymph nodes, the mean difference was -1.11 (95% CI -5.58 to 3.35) after ovarian stimulation plus tamoxifen versus standard ovarian stimulation and 0.30 (95% CI -4.19 to 4.78) after ovarian stimulation plus letrozole versus standard ovarian stimulation. There were also no differences in the number of oocytes or embryos banked. There was one serious adverse event after standard ovarian stimulation: one woman was admitted to the hospital because of ovarian hyperstimulation syndrome. LIMITATIONS, REASONS FOR CAUTION The available literature on which we based our hypothesis, power analysis and sample size calculation was scarce and studies were of low quality. Our study did not have sufficient power to perform subgroup analysis on follicular, luteal or random start of ovarian stimulation.WIDER IMPLICATIONS OF THE FINDINGS Our study showed that adding tamoxifen or letrozole to a standard ovarian stimulation protocol in women with breast cancer does not impact the effectiveness of fertility preservation and paves the way for high-quality long-term follow-up on breast cancer treatment outcomes and women's future pregnancy outcomes. Our study also highlights the need for high-quality studies for all women opting for fertility preservation, as alternative ovarian stimulation protocols have been introduced to clinical practice without proper evidence. STUDY FUNDING/COMPETING INTEREST(S) The study was supported by a grant (2011.WO23.C129) of 'Stichting Pink Ribbon', a breast cancer fundraising charity organization in the Netherlands. M.G., C.B.L. and R.S. declared that the Center for Reproductive Medicine, Amsterdam UMC (location VUMC) has received unconditional research and educational grants from Guerbet, Merck and Ferring, not related to the presented work. C.B.L. declared a speakers fee for Inmed and Yingming. S.C.L. reports grants and non-financial support from Agendia, grants, non-financial support and other from AstraZeneca, grants from Eurocept-pharmaceuticals, grants and non-financial support from Genentech/Roche and Novartis, grants from Pfizer, grants and non-financial support from Tesaro and Immunomedics, other from Cergentis, IBM, Bayer, and Daiichi-Sankyo, outside the submitted work; In addition, S.C.L. has a patent UN23A01/P-EP pending that is unrelated to the present work. J.M.J.S. reported payments and travel grants from Merck and Ferring. C.C.M.B. reports her role as unpaid president of the National guideline committee on Fertility Preservation in women with cancer. K.F. received unrestricted grants from Merck Serono, Good Life and Ferring not related to present work. K.F. declared paid lectures for Ferring. D.S. declared former employment from Merck Sharp & Dohme (MSD). K.F. declared paid lectures for Ferring. D.S. reports grants from MSD, Gedeon Richter and Ferring paid to his institution; consulting fee payments from MSD and Merck Serono paid to his institution; speaker honoraria from MSD, Gedeon Richter, Ferring Pharmaceuticals and Merck Serono paid to his institution. D.S. has also received travel and meeting support from MSD, Gedeon Richter, Ferring Pharmaceuticals and Merck Serono. No payments are related to present work. DATE OF FIRST PATIENT'S ENROLMENT 30 January 2014

    Expectant management versus IUI in unexplained subfertility and a poor pregnancy prognosis (EXIUI study): a randomized controlled trial

    No full text
    STUDY QUESTION: For couples with unexplained subfertility and a poor prognosis for natural conception, is 6 months expectant management (EM) inferior to IUI with ovarian stimulation (IUI-OS), in terms of live births?SUMMARY ANSWER: In couples with unexplained subfertility and a poor prognosis for natural conception, 6 months of EM is inferior compared to IUI-OS in terms of live births.WHAT IS KNOWN ALREADY: Couples with unexplained subfertility and a poor prognosis are often treated with IUI-OS. In couples with unexplained subfertility and a relatively good prognosis for natural conception (>30% in 12 months), IUI-OS does not increase the live birth rate as compared to 6 months of EM. However, in couples with a poor prognosis for natural conception (<30% in 12 months), the effectiveness of IUI-OS is uncertain.STUDY DESIGN, SIZE, DURATION: We performed a non-inferiority multicentre randomized controlled trial within the infrastructure of the Dutch Consortium for Healthcare Evaluation and Research in Obstetrics and Gynaecology. We intended to include 1091 couples within 3 years. The couples were allocated in a 1:1 ratio to 6 months EM or 6 months IUI-OS with either clomiphene citrate or gonadotrophins.PARTICIPANTS/MATERIALS, SETTING, METHODS: We studied heterosexual couples with unexplained subfertility and a poor prognosis for natural conception (<30% in 12 months). The primary outcome was ongoing pregnancy leading to a live birth. Non-inferiority would be shown if the lower limit of the one-sided 90% risk difference (RD) CI was less than minus 7% compared to an expected live birth rate of 30% following IUI-OS. We calculated RD, relative risks (RRs) with 90% CI and a corresponding hazard rate for live birth over time based on intention-to-treat and per-protocol (PP) analysis.MAIN RESULTS AND THE ROLE OF CHANCE: Between October 2016 and September 2020, we allocated 92 couples to EM and 86 to IUI-OS. The trial was halted pre-maturely owing to slow inclusion. Mean female age was 34 years, median duration of subfertility was 21 months. Couples allocated to EM had a lower live birth rate than couples allocated to IUI-OS (12/92 (13%) in the EM group versus 28/86 (33%) in the IUI-OS group; RR 0.40 90% CI 0.24 to 0.67). This corresponds to an absolute RD of minus 20%; 90% CI: -30% to -9%. The hazard ratio for live birth over time was 0.36 (95% CI 0.18 to 0.70). In the PP analysis, live births rates were 8 of 70 women (11%) in the EM group versus 26 of 73 women (36%) in the IUI-OS group (RR 0.32, 90% CI 0.18 to 0.59; RD -24%, 90% CI -36% to -13%) in line with inferiority of EM.LIMITATIONS, REASONS FOR CAUTION: Our trial did not reach the planned sample size, therefore the results are limited by the number of participants.WIDER IMPLICATIONS OF THE FINDINGS: This study confirms the results of a previous trial that in couples with unexplained subfertility and a poor prognosis for natural conception, EM is inferior to IUI-OS

    Expectant management versus IUI in unexplained subfertility and a poor pregnancy prognosis (EXIUI study): a randomized controlled trial

    Get PDF
    STUDY QUESTION: For couples with unexplained subfertility and a poor prognosis for natural conception, is 6 months expectant management (EM) inferior to IUI with ovarian stimulation (IUI-OS), in terms of live births?SUMMARY ANSWER: In couples with unexplained subfertility and a poor prognosis for natural conception, 6 months of EM is inferior compared to IUI-OS in terms of live births.WHAT IS KNOWN ALREADY: Couples with unexplained subfertility and a poor prognosis are often treated with IUI-OS. In couples with unexplained subfertility and a relatively good prognosis for natural conception (>30% in 12 months), IUI-OS does not increase the live birth rate as compared to 6 months of EM. However, in couples with a poor prognosis for natural conception (<30% in 12 months), the effectiveness of IUI-OS is uncertain.STUDY DESIGN, SIZE, DURATION: We performed a non-inferiority multicentre randomized controlled trial within the infrastructure of the Dutch Consortium for Healthcare Evaluation and Research in Obstetrics and Gynaecology. We intended to include 1091 couples within 3 years. The couples were allocated in a 1:1 ratio to 6 months EM or 6 months IUI-OS with either clomiphene citrate or gonadotrophins.PARTICIPANTS/MATERIALS, SETTING, METHODS: We studied heterosexual couples with unexplained subfertility and a poor prognosis for natural conception (<30% in 12 months). The primary outcome was ongoing pregnancy leading to a live birth. Non-inferiority would be shown if the lower limit of the one-sided 90% risk difference (RD) CI was less than minus 7% compared to an expected live birth rate of 30% following IUI-OS. We calculated RD, relative risks (RRs) with 90% CI and a corresponding hazard rate for live birth over time based on intention-to-treat and per-protocol (PP) analysis.MAIN RESULTS AND THE ROLE OF CHANCE: Between October 2016 and September 2020, we allocated 92 couples to EM and 86 to IUI-OS. The trial was halted pre-maturely owing to slow inclusion. Mean female age was 34 years, median duration of subfertility was 21 months. Couples allocated to EM had a lower live birth rate than couples allocated to IUI-OS (12/92 (13%) in the EM group versus 28/86 (33%) in the IUI-OS group; RR 0.40 90% CI 0.24 to 0.67). This corresponds to an absolute RD of minus 20%; 90% CI: -30% to -9%. The hazard ratio for live birth over time was 0.36 (95% CI 0.18 to 0.70). In the PP analysis, live births rates were 8 of 70 women (11%) in the EM group versus 26 of 73 women (36%) in the IUI-OS group (RR 0.32, 90% CI 0.18 to 0.59; RD -24%, 90% CI -36% to -13%) in line with inferiority of EM.LIMITATIONS, REASONS FOR CAUTION: Our trial did not reach the planned sample size, therefore the results are limited by the number of participants.WIDER IMPLICATIONS OF THE FINDINGS: This study confirms the results of a previous trial that in couples with unexplained subfertility and a poor prognosis for natural conception, EM is inferior to IUI-OS
    corecore