5 research outputs found

    Nanoscale Hybrid Electrolytes with Viscosity Controlled Using Ionic Stimulus for Electrochemical Energy Conversion and Storage

    Full text link
    As renewable energy is rapidly integrated into the grid, the challenge has become storing intermittent renewable electricity. Technologies including flow batteries and CO 2 conversion to dense energy carriers are promising storage options for renewable electricity. To achieve this technological advancement, the development of next generation electrolyte materials that can increase the energy density of flow batteries and combine CO 2 capture and conversion is desired. Liquid-like nanoparticle organic hybrid materials (NOHMs) composed of an inorganic core with a tethered polymeric canopy (e.g., polyetheramine (HPE)) have a capability to bind chemical species of interest including CO 2 and redox-active species. In this study, the unique response of NOHM-I-HPE-based electrolytes to salt addition was investigated, including the effects on solution viscosity and structural configurations of the polymeric canopy, impacting transport behaviors. The addition of 0.1 M NaCl drastically lowered the viscosity of NOHM-based electrolytes by up to 90%, reduced the hydrodynamic diameter of NOHM-I-HPE, and increased its self-diffusion coefficient, while the ionic strength did not alter the behaviors of untethered HPE. This study is the first to fundamentally discern the changes in polymer configurations of NOHMs induced by salt addition and provides a comprehensive understanding of the effect of ionic stimulus on their bulk transport properties and local dynamics. These insights could be ultimately employed to tailor transport properties for a range of electrochemical applications

    On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen

    No full text
    Latin America is starting its energy transition. In Colombia, with its abundant natural resources and fossil fuel reserves, hydrogen (H2) could play a key role. This contribution analyzes the potential of blue H2 production in Colombia as a possible driver of the H2 economy. The study assesses the natural resources available to produce blue H2 in the context of the recently launched National Hydrogen Roadmap. Results indicate that there is great potential for low-emission blue H2 production in Colombia using coal as feedstock. Such potential, besides allowing a more sustainable use of non-renewable resources, would pave the way for green H2 deployment in Colombia. Blue H2 production from coal could range from 700 to 8000 ktH2/year by 2050 under conservative and ambitious scenarios, respectively, which could supply up to 1.5% of the global H2 demand by 2050. However, while feedstock availability is promising for blue H2 production, carbon dioxide (CO2) capture capacities and investment costs could limit this potential in Colombia. Indeed, results of this work indicate that capture capacities of 15 to 180 MtCO2/year (conservative and ambitious scenarios) need to be developed by 2050, and that the required investment for H2 deployment would be above that initially envisioned by the government. Further studies on carbon capture, utilization and storage capacity, implementation of a clear public policy, and a more detailed hydrogen strategy for the inclusion of blue H2 in the energy mix are required for establishing a low-emission H2 economy in the country

    Sobre el potencial de la producción de hidrógeno azul en Colombia: una Evaluación basada en recursos fósiles para hidrógeno de bajas emisiones

    No full text
    18 páginasLatin America is starting its energy transition. In Colombia, with its abundant natural resources and fossil fuel reserves, hydrogen (H2 ) could play a key role. This contribution analyzes the potential of blue H2 production in Colombia as a possible driver of the H2 economy. The study assesses the natural resources available to produce blue H2 in the context of the recently launched National Hydrogen Roadmap. Results indicate that there is great potential for low-emission blue H2 production in Colombia using coal as feedstock. Such potential, besides allowing a more sustainable use of non-renewable resources, would pave the way for green H2 deployment in Colombia. Blue H2 production from coal could range from 700 to 8000 ktH2 /year by 2050 under conservative and ambitious scenarios, respectively, which could supply up to 1.5% of the global H2 demand by 2050. However, while feedstock availability is promising for blue H2 production, carbon dioxide (CO2 ) capture capacities and investment costs could limit this potential in Colombia. Indeed, results of this work indicate that capture capacities of 15 to 180 MtCO2 /year (conservative and ambitious scenarios) need to be developed by 2050, and that the required investment for H2 deployment would be above that initially envisioned by the government. Further studies on carbon capture, utilization and storage capacity, implementation of a clear public policy, and a more detailed hydrogen strategy for the inclusion of blue H2 in the energy mix are required for establishing a low-emission H2 economy in the country.América Latina está iniciando su transición energética. En Colombia, con sus abundantes recursos naturales recursos naturales y reservas de combustibles fósiles, hidrógeno (H2 ) podría desempeñar un papel clave. Esta contribución analiza el potencial de la producción de H2 azul en Colombia como posible impulsor de la economía del H2. El estudio evalúa los recursos naturales disponibles para producir H2 azul en el contexto del reciente lanzamiento Hoja de Ruta Nacional del Hidrógeno. Los resultados indican que existe un gran potencial para el H2 azul de bajas emisiones producción en Colombia utilizando carbón como materia prima. Tal potencial, además de permitir una vida más sostenible uso de recursos no renovables, allanaría el camino para el despliegue del H2 verde en Colombia. Azul La producción de H2 a partir del carbón podría oscilar entre 700 y 8.000 ktH2 /año para 2050 bajo un régimen conservador y escenarios ambiciosos, respectivamente, que podrían abastecer hasta el 1,5% de la demanda mundial de H2 para 2050. Sin embargo, si bien la disponibilidad de materia prima es prometedora para la producción de H2 azul, el dióxido de carbono (CO2 ) las capacidades de captura y los costos de inversión podrían limitar este potencial en Colombia. De hecho, los resultados de este Los trabajos indican que se pueden capturar capacidades de 15 a 180 MtCO2. /año (escenarios conservadores y ambiciosos) deben desarrollarse para 2050, y que la inversión requerida para el despliegue del H2 sería superior lo previsto inicialmente por el gobierno. Estudios adicionales sobre captura, utilización y capacidad de almacenamiento, implementación de una política pública clara y una estrategia de hidrógeno más detallada para la inclusión de H2 azul en la combinación energética son necesarios para establecer una economía de H2 con bajas emisiones en el país

    Potencial de biomasa para producir energía a través de hidrógeno verde

    No full text
    18 páginasHydrogen (H2) has become an important energy vector for mitigating the effects of climate change since it can be obtained from renewable sources and can be fed to fuel cells for producing power. Bioethanol can become a green H2 source via Ethanol Steam Reforming (ESR) but several variables influence the power production in the fuel cell. Herein, we explored and optimized the main variables that affect this power production. The process includes biomass fermentation, bioethanol purification, H2 production via ESR, syngas cleaning by a CO-removal reactor, and power production in a high temperature proton exchange membrane fuel cell (HT-PEMFC). Among the explored variables, the steam-to-ethanol molar ratio (S/E) employed in the ESR has the strongest influence on power production, process efficiency, and energy consumption. This effect is followed by other variables such as the inlet ethanol concentration and the ESR temperature. Although the CO-removal reactor did not show a significant effect on power production, it is key to increase the voltage on the fuel cell and consequently the power production. Optimization was carried out by the response surface methodology (RSM) and showed a maximum power of 0.07 kWh kg−1 of bioethanol with an efficiency of 17%, when ESR temperature is 700 °C. These values can be reached from different bioethanol sources as the S/E and CO-removal temperature are changed accordingly with the inlet ethanol concentration. Because there is a linear correlation between S/E and ethanol concentration, it is possible to select a proper S/E and CO-removal temperature to maximize the power generation in the HT-PEMFC via ESR. This study serves as a starting point to diversify the sources for producing H2 and moving towards a H2-economy.El hidrógeno (H2) se ha convertido en un vector energético importante para mitigar los efectos del cambio climático, ya que puede obtenerse de fuentes renovables y puede alimentarse a las celdas de combustible para producir energía. El bioetanol puede convertirse en una fuente de H2 verde a través del reformado con vapor de etanol (ESR), pero varias variables influyen en la producción de energía en la celda de combustible. Aquí, exploramos y optimizamos las principales variables que afectan esta producción de energía. El proceso incluye la fermentación de biomasa, la purificación de bioetanol, la producción de H2 a través de ESR, la limpieza de gas de síntesis mediante un reactor de eliminación de CO y la producción de energía en una celda de combustible de membrana de intercambio de protones de alta temperatura (HT-PEMFC). Entre las variables exploradas, la relación molar de vapor a etanol (S/E) empleada en la ESR tiene la mayor influencia en la producción de energía, la eficiencia del proceso y el consumo de energía. Este efecto es seguido por otras variables como la concentración de etanol de entrada y la temperatura de ESR. Aunque el reactor de eliminación de CO no mostró un efecto significativo en la producción de energía, es clave aumentar el voltaje en la celda de combustible y, en consecuencia, la producción de energía. La optimización se realizó mediante la metodología de superficie de respuesta (RSM) y mostró una potencia máxima de 0,07 kWh kg−1 de bioetanol con una eficiencia del 17%, cuando la temperatura de ESR es de 700 °C. Estos valores se pueden alcanzar a partir de diferentes fuentes de bioetanol, ya que la temperatura de eliminación de S/E y CO se modifica de acuerdo con la concentración de etanol de entrada. Debido a que existe una correlación lineal entre S/E y la concentración de etanol, es posible seleccionar una S/E adecuada y la temperatura de eliminación de CO para maximizar la generación de energía en HT-PEMFC a través de ESR. Este estudio sirve como punto de partida para diversificar las fuentes de producción de H2 y avanzar hacia una economía de H2
    corecore