8 research outputs found

    SEM Characterization of Al<sub>3</sub>Ni Intermetallics and its Influence on Mechanical Properties of Directionally Solidified Hypoeutectic Al-Ni Alloys

    No full text
    International audienceRod-like Al3Ni intermetallic structures have been widely studied by Bridgman techniques of solidification. However, there is a lack of experiments conducted under unsteady-state solidification conditions. Such conditions are very close to the industrial reality since the thermal solidification variables (tip cooling rate, tip growth rate and thermal gradient) are freely changing as solidification progresses. In this research, Al3Ni structures found in hypoeutectic Al-Ni alloys were characterized under transient solidification conditions. Two Al-Ni alloys (1.0 and 5.0 wt%Ni) were directionally solidified. SEM (Scanning Electron Microscope) micrographs were obtained along the casting length (P). It was possible to observe with adequate magnifications the distribution of rod like Al3Ni particles along the interdendritic regions. In order to emphasize the examination ofmorphology and distribution of such particles, the aluminum-rich matrix was dissolved by immersion of the sample in a fluoride acid solution (0.5%HF + 99.5% H2O). The effects of nickel content, dendritic arrangement and Al3Ni distribution on mechanical properties were investigated by tensile tests

    A comparison of columnar-to-equiaxed transition prediction methods using simulation of the growing columnar front

    No full text
    International audienceIn this article, the columnar-to-equiaxed transition (CET) in directionally solidified castings is investigated. Three CET prediction methods from the literature that use a simulation of the growing columnar front are compared to the experimental results, for a range of Al-Si alloys: Al-3 wt pct Si, Al-7 wt pct Si, and Al-11 wt pct Si. The three CET prediction methods are the constrained-to-unconstrained criterion, the critical cooling rate criterion, and the equiaxed index criterion. These methods are termed indirect methods, because no information is required for modeling the equiaxed nucleation and growth; only the columnar solidification is modeled. A two-dimensional (2-D) front-tracking model of columnar growth is used to compare each criterion applied to each alloy. The constrained-to-unconstrained criterion and a peak equiaxed index criterion agree well with each other and some agreement is found with the experimental findings. For the critical cooling rate criterion, a minimum value for the cooling rate (between 0.07 and 0.11 K/s) is found to occur close to the CET position. However, this range of values differs from those cited in the literature (0.15 to 0.16 K/s), leading to a considerable difference in the prediction of the CET positions. A reason for this discrepancy is suggested, based on the fundamental differences in the modeling approaches. © The Minerals, Metals & Materials Society and ASM International 2009
    corecore