281 research outputs found

    Midlife Women's Responses to a Hospital Sleep Challenge: Aging and Menopause Effects on Sleep Architecture

    Full text link
    Objective: To distinguish aging from menopause effects on sleep architecture, we studied an episode of disturbed hospital sleep in asymptomatic midlife women during the follicular phase of an ovulatory cycle and three control groups differing by age or menopause status. Methods: Fifty-one studies were conducted in four groups of volunteers: young cycling (YC, 20-30 years, n = 14), older cycling (OC, 40-50 years, n = 15), ovariectomized receiving estrogen therapy (OVX, 40-50 years, n = 12), and spontaneously postmenopausal (PM, 40-50 years, n = 10). Subjects were admitted to the University Hospital General Clinical Research Center (GCRC) for a first-night sleep study conducted during a 24-hour, frequent blood sampling protocol. Results: Despite similar estrogen concentrations in the YC (28 ± 4 pg/ml) and OC (34 ± 6 pg/ml) groups, OC women had reduced sleep efficiency (79% ± 2%) vs. YC (87% ± 3%; p = 0.009). In the OVX and PM groups where estrogen concentrations were markedly different, sleep efficiency was also reduced vs. the YC group (OVX vs. YC, 79% ± 3% vs. 87% ± 3%, p = 0.05; PM vs. YC, 75% ± 3% vs. 87% ± 3%, p = 0.007). Wake time was longer in the three older groups (103 ± 10 minutes, 101 ± 12 minutes, 123 ± 12 minutes for OC, OVX, PM, respectively) vs. YC (63 ± 13 minutes, p < 0.05). The number of stage shifts was positively associated with advancing age (rho = 0.3, p < 0.03) but not with estrogen concentration. Conclusions: Aging-related sleep deficits in response to an experimental stressor occur in midlife women prior to menopause.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63173/1/154099904323016491.pd

    A highly reproducible rotenone model of Parkinson's disease

    Get PDF
    Producción CientíficaThe systemic rotenone model of Parkinson's disease (PD) accurately replicates many aspects of the pathology of human PD and has provided insights into the pathogenesis of PD. The major limitation of the rotenone model has been its variability, both in terms of the percentage of animals that develop a clear-cut nigrostriatal lesion and the extent of that lesion. The goal here was to develop an improved and highly reproducible rotenone model of PD. In these studies, male Lewis rats in three age groups (3, 7 or 12-14 months) were administered rotenone (2.75 or 3.0 mg/kg/day) in a specialized vehicle by daily intraperitoneal injection. All rotenone-treated animals developed bradykinesia, postural instability, and/or rigidity, which were reversed by apomorphine, consistent with a lesion of the nigrostriatal dopamine system. Animals were sacrificed when the PD phenotype became debilitating. Rotenone treatment caused a 45% loss of tyrosine hydroxylase-positive substantia nigra neurons and a commensurate loss of striatal dopamine. Additionally, in rotenone-treated animals, alpha-synuclein and poly-ubiquitin positive aggregates were observed in dopamine neurons of the substantia nigra. In summary, this version of the rotenone model is highly reproducible and may provide an excellent tool to test new neuroprotective strategies

    Systemic Copper Disorders Influence the Olfactory Function in Adult Rats: Roles of Altered Adult Neurogenesis and Neurochemical Imbalance

    Get PDF
    Disrupted systemic copper (Cu) homeostasis underlies neurodegenerative diseases with early symptoms including olfactory dysfunction. This study investigated the impact of Cu dyshomeostasis on olfactory function, adult neurogenesis, and neurochemical balance. Models of Cu deficiency (CuD) and Cu overload (CuO) were established by feeding adult rats with Cu-restricted diets plus ip. injection of a Cu chelator (ammonium tetrathiomolybdate) and excess Cu, respectively. CuD reduced Cu levels in the olfactory bulb (OB), subventricular zone (SVZ), rostral migratory stream (RMS), and striatum, while CuO increased Cu levels in these areas. The buried pellet test revealed both CuD and CuO prolonged the latency to uncover food. CuD increased neural proliferation and stem cells in the SVZ and newly differentiated neurons in the OB, whereas CuO caused opposite alterations, suggesting a “switch”-type function of Cu in regulating adult neurogenesis. CuO increased GABA in the OB, while both CuD and CuO reduced DOPAC, HVA, 5-HT and the DA turnover rate in olfactory-associated brain regions. Altered mRNA expression of Cu transport and storage proteins in tested brain areas were observed under both conditions. Together, results support an association between systemic Cu dyshomeostasis and olfactory dysfunction. Specifically, altered adult neurogenesis along the SVZ-RMS-OB pathway and neurochemical imbalance could be the factors that may contribute to olfactory dysfunction

    Evidence for a heritable predisposition to Chronic Fatigue Syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic Fatigue Syndrome (CFS) came to attention in the 1980s, but initial investigations did not find organic causes. Now decades later, the etiology of CFS has yet to be understood, and the role of genetic predisposition in CFS remains controversial. Recent reports of CFS association with the retrovirus xenotropic murine leukemic virus-related virus (XMRV) or other murine leukemia related retroviruses (MLV) might also suggest underlying genetic implications within the host immune system.</p> <p>Methods</p> <p>We present analyses of familial clustering of CFS in a computerized genealogical resource linking multiple generations of genealogy data with medical diagnosis data of a large Utah health care system. We compare pair-wise relatedness among cases to expected relatedness in the Utah population, and we estimate risk for CFS for first, second, and third degree relatives of CFS cases.</p> <p>Results</p> <p>We observed significant excess relatedness of CFS cases compared to that expected in this population. Significant excess relatedness was observed for both close (p <0.001) and distant relationships (p = 0.010). We also observed significant excess CFS relative risk among first (2.70, 95% CI: 1.56-4.66), second (2.34, 95% CI: 1.31-4.19), and third degree relatives (1.93, 95% CI: 1.21-3.07).</p> <p>Conclusions</p> <p>These analyses provide strong support for a heritable contribution to predisposition to Chronic Fatigue Syndrome. A population of high-risk CFS pedigrees has been identified, the study of which may provide additional understanding.</p

    Summary: Combating Climate Change with Section 115 of the Clean Air Act

    Get PDF
    The scale and scope of the climate crisis calls for comprehensive nationwide efforts to reduce greenhouse gas emissions. New legislation, passed by Congress and signed by the President, is the first and best option for climate action at the federal level. This could be a version of the Green New Deal, a carbon tax, sectoral limits, an emissions cap with compliance trading, or another approach. What matters most is that the legislation effectively cut the greenhouse gas emissions driving the world’s temperatures ever higher. Unfortunately, the prospect for federal legislation is uncertain, while strong and decisive action is needed now. A president committed to tackling climate change will need a backup plan in case Congress remains gridlocked, one that relies on existing statutes to achieve the deep emission reductions the science says we need

    A gene signature for post-infectious chronic fatigue syndrome

    Get PDF
    Background: At present, there are no clinically reliable disease markers for chronic fatigue syndrome. DNA chip microarray technology provides a method for examining the differential expression of mRNA from a large number of genes. Our hypothesis was that a gene expression signature, generated by microarray assays, could help identify genes which are dysregulated in patients with post-infectious CFS and so help identify biomarkers for the condition. Methods: Human genome-wide Affymetrix GeneChip arrays (39,000 transcripts derived from 33,000 gene sequences) were used to compare the levels of gene expression in the peripheral blood mononuclear cells of male patients with post-infectious chronic fatigue (n = 8) and male healthy control subjects (n = 7). Results: Patients and healthy subjects differed significantly in the level of expression of 366 genes. Analysis of the differentially expressed genes indicated functional implications in immune modulation, oxidative stress and apoptosis. Prototype biomarkers were identified on the basis of differential levels of gene expression and possible biological significance Conclusion: Differential expression of key genes identified in this study offer an insight into the possible mechanism of chronic fatigue following infection. The representative biomarkers identified in this research appear promising as potential biomarkers for diagnosis and treatment

    In Vivo Comparison of Two Human Norovirus Surrogates for Testing Ethanol-Based Handrubs: The Mouse Chasing the Cat!

    Get PDF
    Human noroviruses (HuNoV), a major cause of acute gastroenteritis worldwide, cannot be readily cultured in the lab. Therefore, a feline calicivirus (FCV) is often used as its surrogate to, among other things, test alcohol-based handrubs (ABHR). The more recent laboratory culture of a mouse norovirus (MNV) provides an alternative. While MNV is closer to HuNoV in several respects, to date, no comparative testing of FCV and MNV survival and inactivation on human hands has been performed. This study was designed to address the knowledge gap. The rates of loss in viability during drying on hands were −1.91 and −1.65% per minute for FCV and MNV, respectively. When the contaminated skin was exposed for 20 s to either a commercial ABHR with 62% (v/v) ethanol or to 75% (v/v) ethanol in water, FCV infectivity was reduced by <1 log10 while that of MNV by nearly 2.8 log10. Extending the contact time to 30 s reduced the FCV titer by almost 2 log10 by both test substances and that of MNV by >3.5 log10 by the commercial ABHR while 75% ethanol did not show any noticeable improvement in activity as compared to the 20 s contact. An 80% (v/v) aqueous solution of ethanol gave only a 1.75 log10 reduction in MNV activity after 20 s. The results show significant differences in the ethanol susceptibility of FCV and MNV in contact times relevant to field use of ABHR and also that 62% ethanol was a more effective virucide than either 75% or 80% ethanol. These findings indicate the need for a review of the continuing use of FCV as a surrogate for HuNoV
    corecore