108 research outputs found

    WHITE PAPER: Environmental Scan for DataONE

    Get PDF
    This environmental scan (conducted by the U&AWG in fall 2018) features a multi-faceted analysis of projects/initiatives in the DataONE space. This report (1) provides context by identifying organizations in the data space; (2) analyzes those organizations most similar to DataONE regarding key services and products; and (3) explores the data training/education environment. As appropriate, the report offers key insights derived from the analysis

    Structure of Spherulites in Insulin, β-Lactoglobulin, and Amyloid β

    Get PDF
    Under denaturing conditions such as low pH and elevated temperatures, proteins in vitro can misfold and aggregate to form long rigid rods called amyloid fibrils; further self-assembly can lead to larger structures termed spherulites. Both of these aggregates resemble amyloid tangles and plaques associated with Alzheimer’s disease in vivo. The ability to form such aggregates in a multitude of different proteins suggests that it is a generic ability in their mechanism to form. Little is known about the structure of these large spherulites ranging from 5 to 100 microns and whether they can reproducibly form in amyloid β (1-40) (Aβ40), a 40-amino acid residue peptide, which is one of the major components of Alzheimer’s amyloid deposits. Here, we show that spherulites can readily form in Aβ40 under certain monomerization and denaturing conditions. Using polarized and nonpolarized Raman spectroscopy, we analyzed the secondary structure of spherulites formed from three different proteins: insulin, β-lactoglobulin (BLG), and Aβ40. Visually, these spherulites have a characteristic “Maltese Cross” structure under crossed polarizers through an optical microscope. However, our results indicate that insulin and Aβ40 spherulites have similar core structures consisting mostly of random coils with radiating fibrils, whereas BLG mostly contains β-sheets and fibrils that are likely to be spiraling from the core to the edge

    A Thioacetal Photocage Designed for Dual Release: Application in the Quantitation of Therapeutic Release by Synchronous Reporter Decaging

    Full text link
    Despite the immense potential of existing photocaging technology, its application is limited by the paucity of advanced caging tools. Here, we report on the design of a novel thioacetal ortho‐nitrobenzaldehyde (TNB) dual arm photocage that enabled control of the simultaneous release of two payloads linked to a single TNB unit. By using this cage, which was prepared in a single step from commercial 6‐nitroverataldehyde, three drug–fluorophore conjugates were synthesized: Taxol‐TNB‐fluorescein, Taxol‐TNB‐coumarin, and doxorubicin‐TNB‐coumarin, and long‐wavelength UVA light‐triggered release experiments demonstrated that dual payload release occurred with rapid decay kinetics for each conjugate. In cell‐based assays performed in vitro, dual release could also be controlled by UV exposure, resulting in increased cellular fluorescence and cytotoxicity with potency equal to that of unmodified drug towards the KB carcinoma cell line. The extent of such dual release was quantifiable by reporter fluorescence measured in situ and was found to correlate with the extent of cytotoxicity. Thus, this novel dual arm cage strategy provides a valuable tool that enables both active control and real‐time monitoring of drug activation at the delivery site.Binary photocage: An ortho‐nitrobenzaldehyde‐derived dual arm photocage was developed for real‐time monitoring of the simultaneous release of two payloads linked to a single cage unit. Light‐controlled uncaging of the drug–fluorophore conjugate resulted in increased cellular fluorescence, which was found to correlate with cytotoxicity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135367/1/cbic201600494.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135367/2/cbic201600494-sup-0001-misc_information.pd

    Assessment, Usability, and Sociocultural Impacts of DataONE

    Get PDF
    DataONE, funded from 2009-2019 by the U.S. National Science Foundation, is an early example of a large-scale project that built both a cyberinfrastructure and culture of data discovery, sharing, and reuse. DataONE used a Working Group model, where a diverse group of participants collaborated on targeted research and development activities to achieve broader project goals. This article summarizes the work carried out by two of DataONE’s working groups: Usability & Assessment (2009-2019) and Sociocultural Issues (2009-2014). The activities of these working groups provide a unique longitudinal look at how scientists, librarians, and other key stakeholders engaged in convergence research to identify and analyze practices around research data management through the development of boundary objects, an iterative assessment program, and reflection. Members of the working groups disseminated their findings widely in papers, presentations, and datasets, reaching international audiences through publications in 25 different journals and presentations to over 5,000 people at interdisciplinary venues. The working groups helped inform the DataONE cyberinfrastructure and influenced the evolving data management landscape. By studying working groups over time, the paper also presents lessons learned about the working group model for global large-scale projects that bring together participants from multiple disciplines and communities in convergence research

    First Detector Guide to Invasive Insects

    Get PDF
    This is a guide to help first detectors identify invasive insects, including biology, identification, and monitoring
    • …
    corecore