1,066 research outputs found

    Transcranial Magnetic Resonance Imaging-Guided Focused Ultrasound Treatment at 1.5 T: A Retrospective Study on Treatment- and Patient-Related Parameters Obtained From 52 Procedures

    Get PDF
    Objective: To present a retrospective analysis of patient- and sonication-related parameters of a group of patients treated with a transcranial magnetic resonance imaging (MRI)-guided focused ultrasound (tcMRgFUS) system integrated with a 1.5-T MRI unit. Methods: The data obtained from 59 patients, who underwent the tcMRgFUS procedure from January 2015 to April 2019, were retrospectively reviewed for this study. The following data, among others, were mainly collected: skull density ratio (SDR), skull area (SA), number of available transducer elements (Tx), and estimated focal power at target (FP). For each of the four different treatment stages, we calculated the number of sonication processes (S-n), user-defined sonication power (S-p), effective measured power (S-mp), sonication duration (S-d), user-defined energy (E), effective measured energy (E-m), maximum temperature (T-max), and MR thermometry plane orientation. Furthermore, the time delay between each sonication (S-t) and the total treatment time (T-t) were recorded. Results: Fifty-two patients (40 males and 12 females; age 64.51 +/- SD 11.90 years; range 26-86 years), who underwent unilateral Vim thalamotomy (left = 50, 96.15%; right = 2, 3.85%) for medication-refractory essential tremor (n = 39; 78%) or Parkinson tremor (n = 13; 22%) were considered. A total of 1,068 (95.10%) sonication processes were included in our final analysis (average S-n per treatment: 20.65 +/- 6.18; range 13-41). The energy released onto the planned target was found to decrease with the SDR for all temperature ranges. A positive correlation was observed between the slope of T-max vs. E-m plot and the SDR (R-2 = 0.765; p < 0.001). In addition, the T-max was positively correlated with SDR (R-2 = 0.398; p < 0.005). On the contrary, no significant correlation was found between SDR and SA or Tx. An analysis of the MR thermometry scanning plane indicated that, at our site, the axial and the coronal planes were used (on average) 10.4 (SD +/- 3.8) and 7.7 (SD +/- 3.0) times, respectively, whereas the sagittal plane was used only 2.5 (SD +/- 3.0) times per treatment. Conclusion: Our results confirm the factors that significantly influence the course of a tcMRgFUS procedure even when a 1.5-T MRI scanner is used for procedure guidance. The experience we gained in this study indicates that the SDR remains one of the most significant technical parameters to be considered in a tcMRgFUS procedure. The possibility of prospectively setting the sonication energy according to the presented curves of energy delivery as a function of SDR for each treatment stage could provide a further understanding and a greater awareness of this emerging technology

    Resectable and borderline resectable pancreatic ductal adenocarcinoma: Role of the radiologist and oncologist in the era of precision medicine

    Get PDF
    The incidence and mortality of pancreatic ductal adenocarcinoma are growing over time. The management of patients with pancreatic ductal adenocarcinoma involves a multidisciplinary team, ideally involving experts from surgery, diagnostic imaging, interventional endoscopy, medical oncology, radiation oncology, pathology, geriatric medicine, and palliative care. An adequate staging of pancreatic ductal adenocarcinoma and re-assessment of the tumor after neoadjuvant therapy allows the multidisciplinary team to choose the most appropriate treatment for the patient. This review article discusses advancement in the molecular basis of pancreatic ductal adenocarcinoma, diagnostic tools available for staging and tumor response assessment, and management of resectable or borderline resectable pancreatic cancer

    CULTURAL HERITAGE DIGITAL PRESERVATION THROUGH AI-DRIVEN ROBOTICS

    Get PDF
    This paper introduces a novel methodology developed for creating 3D models of archaeological artifacts that reduces the time and effort required by operators. The approach uses a simple vision system mounted on a robotic arm that follows a predetermined path around the object to be reconstructed. The robotic system captures different viewing angles of the object and assigns 3D coordinates corresponding to the robot's pose, allowing it to adjust the trajectory to accommodate objects of various shapes and sizes. The angular displacement between consecutive acquisitions can also be fine-tuned based on the desired final resolution. This flexible approach is suitable for different object sizes, textures, and levels of detail, making it ideal for both large volumes with low detail and small volumes with high detail. The recorded images and assigned coordinates are fed into a constrained implementation of the structure-from-motion (SfM) algorithm, which uses the scale-invariant features transform (SIFT) method to detect key points in each image. By utilising a priori knowledge of the coordinates and SIFT algorithm, low processing time can be ensured while maintaining high accuracy in the final reconstruction. The use of a robotic system to acquire images at a pre-defined pace ensures high repeatability and consistency across different 3D reconstructions, eliminating operator errors in the workflow. This approach not only allows for comparisons between similar objects but also provides the ability to track structural changes of the same object over time. Overall, the proposed methodology provides a significant improvement over current photogrammetry techniques by reducing the time and effort required to create 3D models while maintaining a high level of accuracy and repeatability

    New advances in radiomics of gastrointestinal stromal tumors

    Get PDF
    Gastrointestinal stromal tumors (GISTs) are uncommon neoplasms of the gastrointestinal tract with peculiar clinical, genetic, and imaging characteristics. Preoperative knowledge of risk stratification and mutational status is crucial to guide the appropriate patients’ treatment. Predicting the clinical behavior and biological aggressiveness of GISTs based on conventional computed tomography (CT) and magnetic resonance imaging (MRI) evaluation is challenging, unless the lesions have already metastasized at the time of diagnosis. Radiomics is emerging as a promising tool for the quantification of lesion heterogeneity on radiological images, extracting additional data that cannot be assessed by visual analysis. Radiomics applications have been explored for the differential diagnosis of GISTs from other gastrointestinal neoplasms, risk stratification and prediction of prognosis after surgical resection, and evaluation of mutational status in GISTs. The published researches on GISTs radiomics have obtained excellent performance of derived radiomics models on CT and MRI. However, lack of standardization and differences in study methodology challenge the application of radiomics in clinical practice. The purpose of this review is to describe the new advances of radiomics applied to CT and MRI for the evaluation of gastrointestinal stromal tumors, discuss the potential clinical applications that may impact patients’ management, report limitations of current radiomics studies, and future directions

    Advanced magnetic resonance imaging of cortical laminar necrosis in patients with stroke

    Get PDF
    Purpose: The aim of this study was to assess the novel advanced magnetic resonance imaging findings of acute stage cortical laminar necrosis developing after complicated cardiovascular or abdominal surgery. Materials and methods: This institutional review board-approved study included patients with postoperative stroke due to cortical laminar necrosis imaged with magnetic resonance in the acute stage. Brain magnetic resonance imaging examinations were obtained on a 3T magnetic resonance scanner within 48 hours of the neurological symptoms, including diffusion-weighted images (b value, 1000 s/mm2) and arterial spin labelling using a pseudo-continuous arterial spin labelling method in four patients. Conventional and advanced magnetic resonance images were analysed to assess the imaging features in acute stage cortical laminar necrosis. Results: The final population consisted of 14 patients (seven men and seven women, mean age 61 years, range 32–79 years) diagnosed with stroke and acute phase cortical laminar necrosis. All the patients presented with cortical lesions showing restricted diffusion on diffusion-weighted images and hypointensity on the apparent diffusion coefficient map. Cortical hyperintensity on T2-weighted or fluid-attenuated inversion recovery images was found in three (21%) and six (43%) patients, respectively. Reduced perfusion was noted in three out of four patients imaged with arterial spin labelling, while in one case no corresponding perfusion abnormality was noted on the arterial spin labelling maps. Arterial spin labelling abnormalities were much more extensive than diffusion restriction in two patients, and they were associated with a poor outcome. Conclusion: Cortical hyperintense abnormalities on diffusion-weighted imaging may be the only sign of developing cortical laminar necrosis injury. The acquisition of arterial spin labelling helps to identify perfusion alterations and the extension of the ischaemic injury
    • …
    corecore