337 research outputs found

    A Chandra View of the Normal SO Galaxy NGC 1332: II: Solar Abundances in the Hot Gas and Implications for SN Enrichment

    Full text link
    We present spectral analysis of the diffuse emission in the normal, isolated, moderate-Lx S0 NGC 1332, constraining both the temperature profile and the metal abundances in the ISM. The characteristics of the point source population and the gravitating matter are discussed in two companion papers. The diffuse emission comprises hot gas, with an ~isothermal temperature profile (~0.5 keV), and emission from unresolved point-sources. In contrast with the cool cores of many groups and clusters, we find a small central temperature peak. We obtain emission-weighted abundance contraints within 20 kpc for several key elements: Fe, O, Ne, Mg and Si. The measured iron abundance (Z_Fe=1.1 in solar units; >0.53 at 99% confidence) strongly excludes the very sub-solar values often historically reported for early-type galaxies but agrees with recent observations of brighter galaxies and groups. The abundance ratios, with respect to Fe, of the other elements were also found to be ~solar, although Z_o/Z_Fe was significantly lower (<0.4). Such a low O abundance is not predicted by simple models of ISM enrichment by Type Ia and Type II supernovae, and may indicate a significant contribution from primordial hypernovae. Revisiting Chandra observations of the moderate-Lx, isolated elliptical NGC 720, we obtain similar abundance constraints. Adopting standard SNIa and SNII metal yields, our abundance ratio constraints imply 73+/-5% and 85+/-6% of the Fe enrichment in NGC 1332 and NGC 720, respectively, arises from SNIa. Although these results are sensitive to the considerable systematic uncertainty in the SNe yields, they are in good agreement with observations of more massive systems. These two moderate-Lx early-type galaxies reveal a consistent pattern of metal enrichment from cluster scales to moderate Lx/Lb galaxies. (abridged)Comment: 12 pages, 4 figures, accepted for publication in ApJ. Minor changes to match published versio

    Constraints on the mass and abundance of black holes in the Galactic halo: the high mass limit

    Get PDF
    We establish constraints on the mass and abundance of black holes in the Galactic halo by determining their impact on globular clusters which are conventionally considered to be little evolved. Using detailed Monte Carlo simulations and simple analytic estimates, we conclude that, at Galactocentric radius R~8 kpc, black holes with masses M_bh >~(1-3) x 10^6 M_sun can comprise no more than a fraction f_bh ~ 0.025-0.05 of the total halo density. This constraint significantly improves those based on disk heating and dynamical friction arguments as well as current lensing results. At smaller radius, the constraint on f_bh strengthens, while, at larger radius, an increased fraction of black holes is allowed.Comment: 13 pages, 10 figures, revised version, in press, Monthly Notice

    The Chandra High Energy Transmission Grating: Design, Fabrication, Ground Calibration and Five Years in Flight

    Full text link
    Details of the design, fabrication, ground and flight calibration of the High Energy Transmission Grating, HETG, on the Chandra X-ray Observatory are presented after five years of flight experience. Specifics include the theory of phased transmission gratings as applied to the HETG, the Rowland design of the spectrometer, details of the grating fabrication techniques, and the results of ground testing and calibration of the HETG. For nearly six years the HETG has operated essentially as designed, although it has presented some subtle flight calibration effects.Comment: 34 pages (including 30 figures), accepted for publication in PAS

    Tuning Time-Domain Pseudospectral Computations of the Self-Force on a Charged Scalar Particle

    Full text link
    The computation of the self-force constitutes one of the main challenges for the construction of precise theoretical waveform templates in order to detect and analyze extreme-mass-ratio inspirals with the future space-based gravitational-wave observatory LISA. Since the number of templates required is quite high, it is important to develop fast algorithms both for the computation of the self-force and the production of waveforms. In this article we show how to tune a recent time-domain technique for the computation of the self-force, what we call the Particle without Particle scheme, in order to make it very precise and at the same time very efficient. We also extend this technique in order to allow for highly eccentric orbits.Comment: IOP LaTeX style. 11 pages, 4 pages. Contribution to the NRDA/CAPRA 2010 Conferenc

    The Coronae of AR Lac

    Full text link
    We observed the coronally active eclipsing binary, AR Lac, with the High Energy Transmission Grating on Chandra for a total of 97 ks, spaced over five orbits, at quadratures and conjunctions. Contemporaneous and simultaneous EUV spectra and photometry were also obtained with the Extreme Ultraviolet Explorer. Significant variability in both X-ray and EUV fluxes were observed, dominated by at least one X-ray flare and one EUV flare. We saw no evidence of primary or secondary eclipses. X-ray flux modulation was largest at high temperature, indicative of flare heating of coronal plasma. Line widths interpreted in terms of Doppler broadening suggest that both binary stellar components are active. From line fluxes obtained from total integrated spectra, we have modeled the emission measure and abundance distributions. A strong maximum was found in the differential emission measure, characterized by peaks at log T = 6.9 and 7.4, together with a weak but significant cooler maximum near log T=6.2, and a moderately strong hot tail from log T= 7.6-8.2. Coronal abundances have a broad distribution and show no simple correlation with first ionization potential. While the resulting model spectrum generally agrees very well with the observed spectrum, there are some significant discrepancies, especially among the many Fe L-lines. Both the emission measure and abundance distributions are qualitatively similar to prior determinations from other X-ray and ultraviolet spectra, indicating some long-term stability in the overall coronal structure.Comment: 31 pages, 8 figures, 3 tables; Accepted for publication in the Astrophysical Journal (tentatively October 1, 2003

    Resolving the Composite Fe K-alpha Emission Line in the Galactic Black Hole Cygnus X-1 with Chandra

    Full text link
    We observed the Galactic black hole Cygnus X-1 with the Chandra High Energy Transmission Grating Spectrometer for 30 kiloseconds on 4 January, 2001. The source was in an intermediate state, with a flux that was approximately twice that commonly observed in its persistent low/hard state. Our best-fit model for the X-ray spectrum includes narrow Gaussian emission line (E = 6.415 +/- 0.007 keV, FWHM = 80 (+28, -19) eV, W = 16 (+3, -2) eV) and broad line (E = 5.82 (+0.06, -0.07) keV, FWHM = 1.9 (+0.5, -0.3) keV, W = 140 (+70, -40) eV) components, and a smeared edge at 7.3 +/- 0.2 keV (tau ~ 1.0). The broad line profile is not as strongly skewed as those observed in some Seyfert galaxies. We interpret these features in terms of an accretion disk with irradiation of the inner disk producing a broad Fe K-alpha emission line and edge, and irradiation of the outer disk producing a narrow Fe K-alpha emission line. The broad line is likely shaped predominantly by Doppler shifts and gravitational effects, and to a lesser degree by Compton scattering due to reflection. We discuss the underlying continuum X-ray spectrum and these line features in the context of diagnosing the accretion flow geometry in Cygnus X-1 and other Galactic black holes.Comment: Accepted for publication in Ap

    Globular Clusters as Candidates for Gravitational Lenses to Explain Quasar-Galaxy Associations

    Full text link
    We argue that globular clusters (GCs) are good candidates for gravitational lenses in explaining quasar-galaxy associations. The catalog of associations (Bukhmastova 2001) compiled from the LEDA catalog of galaxies (Paturel 1997) and from the catalog of quasars (Veron-Cetty and Veron 1998) is used. Based on the new catalog containing 8382 pairs, we show that one might expect an increased number of GCs around irregular galaxies of types 9 and 10 from the hypothesis that distant compact sources are gravitationally lensed by GCs in the halos of foreground galaxies. The King model is used to determine the central surface densities of 135 GCs in the Milky Way. The distribution of GCs in central surface density was found to be lognormal.Comment: 22 pages, 4 figure

    Positive Quantum Brownian Evolution

    Full text link
    Using the independent oscillator model with an arbitrary system potential, we derive a quantum Brownian equation assuming a correlated total initial state. Although not of Lindblad form, the equation preserves positivity of the density operator on a restricted set of initial states
    corecore