88 research outputs found

    A challenging task—how to successfully separate theca and granulosa cells: a mandatory step for investigating ovary steroidogenesis

    Get PDF
    The reciprocal interaction in between theca (TCs) and granulosa (GCs) cells plays a pivotal role in al-lowing ovary to display a wide range of physiological functions, including steroidogenesis and reproduction capabilities. For instance, changes in the respective proportion among GCs and TCS have been correlated to progression or recovery from Polycystic Ovary Syn-drome (Bevilacqua, et al. 2019). To investigate how these cells cooperate, it is important to understand how they work in isolation. Therefore, segregation of the two cell clusters constitutes a pre-requisite for planning functional studies on the ovary

    HGF modulates actin cytoskeleton remodeling and contraction in testicular myoid cells

    Get PDF
    The presence of the HGF/Met system in the testicular myoid cells was first discovered by our group. However, the physiological role of this pathway remains poorly understood. We previously reported that HGF increases uPA secretion and TGF-β activation in cultured tubular fragments and that HGF is maximally expressed at Stages VII–VIII of the seminiferous epithelium cycle, when myoid cell contraction occurs. It is well known that the HGF/Met pathway is involved in cytoskeletal remodeling; moreover, the interaction of uPA with its receptor, uPAR, as well as the activation of TGF-β have been reported to be related to the actin cytoskeleton contractility of smooth muscle cells. Herein, we report that HGF induces actin cytoskeleton remodeling in vitro in isolated myoid cells and myoid cell contraction in cultured seminiferous tubules. To better understand these phenomena, we evaluated: (1) the regulation of the uPA machinery in isolated myoid cells after HGF administration; and (2) the effect of uPA or Met inhibition on HGF-treated tubular fragments. Because uPA activates latent TGF-β, the secretion of this factor was also evaluated. We found that both uPA and TGF-β activation increase after HGF administration. In testicular tubular fragments, HGF-induced TGF-β activation and myoid cell contraction are abrogated by uPA or Met inhibitor administratio

    Effect of mitotane on mouse ovarian follicle development and fertility.

    Get PDF
    Mitotane (MTT) is an adrenolytic drug used in advanced and adjuvant treatment of adrenocortical carcinoma, in Cushing's disease and in ectopic syndrome. However, knowledge about its effects on the ovary is still scarce. The purpose of this study is to investigate the effect of MTT on the ovary using in vivo and in vitro models. The study was performed in CD1 mice and in the COV-434 human ovarian granulosa cell line. We examined ovarian morphology, follicle development, steroidogenesis and procreative function in mice and the effect of MTT on cell growth in vitro. Our results revealed that treatment of CD1 mice with MTT induces a decrease in early antral follicles with a subsequent increase in the secondary follicles, measured by the increased levels of anti-Mullerian Hormone (P < 0.05) and decreased levels of FSH receptor (P < 0.05). Moreover, we observed a significant decrease in Cyp11a1 (P < 0.01) and Cyp17a1 (P < 0.001) mRNA level in MTT-treated animals. Ovulation, induced by PMSG/hCG stimulation, was also significantly impaired, with a reduction in the number of ovulated oocytes (P < 0.01) and fewer corpora lutea in treated animals. Likewise, the mating experiment demonstrated a delay in the time of conception as well as fewer pups per litter in MTT-treated mice (P < 0.05). Experiments performed on the COV-434 cell line showed a significant inhibition of growth followed by apoptosis (P < 0.01). In conclusion, our study highlights the key points of ovarian folliculogenesis affected by MTT and demonstrates impairment of the ovulation process with a negative impact on conception, which is nevertheless preserved

    SerpinE1 drives a cell-autonomous pathogenic signaling in Hutchinson-Gilford progeria syndrome

    Get PDF
    Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal disease caused by Lamin A mutation, leading to altered nuclear architecture, loss of peripheral heterochromatin and deregulated gene expression. HGPS patients eventually die by coronary artery disease and cardiovascular alterations. Yet, how deregulated transcriptional networks at the cellular level impact on the systemic disease phenotype is currently unclear. A genome-wide analysis of gene expression in cultures of primary HGPS fibroblasts identified SerpinE1, also known as Plasminogen Activator Inhibitor (PAI-1), as central gene that propels a cell-autonomous pathogenic signaling from the altered nuclear lamina. Indeed, siRNA-mediated downregulation and pharmacological inhibition of SerpinE1 by TM5441 could revert key pathological features of HGPS in patient-derived fibroblasts, including re-activation of cell cycle progression, reduced DNA damage signaling, decreased expression of pro-fibrotic genes and recovery of mitochondrial defects. These effects were accompanied by the correction of nuclear abnormalities. These data point to SerpinE1 as a novel potential effector and target for therapeutic interventions in HGPS pathogenesis

    Oocyte-granulosa cell interactions

    No full text
    In the past, different protocols of ovulation induction, aimed to overcome problems of anovulatory infertility in humans, have been developed during IVF programmes. However, administration of exogenous hormones may cause severe health problems, e.g. ovarian hyperstimulation syndrome. To overcome this problem an attractive alternative is to develop in-vitro systems that allow follicle and oocyte growth and maturation. This paper reviews the current status of research on oocyte-granulosa cell interactions and on the autocrine and paracrine factors involved in follicle development. The ovarian follicle is a morphological and functional unit in which the somatic and germ cell components are intimately associated and interdependent, The co-ordinate development of follicle and oocyte leads to a number of modifications in the growing oocyte necessary for the acquisition of competence to mature correctly and to undergo fertilization and embryo development. The search for the optimal culture conditions and the correct balance of hormones necessary to obtain a fertilizable oocyte in vitro is extremely important for clinical and agricultural applications

    Cell-cell interactions and oocyte growth.

    No full text

    Retinoid modulation of plasminogen activator production in rat sertoli cells

    No full text
    Tissue type (t) and urokinase type (u) plasminogen activators (PAs) have been shown to be secreted by Sertoli cells in the seminiferous tubules in a cyclic fashion and to be dependent upon FSH stimulation or upon the presence of adjacent spermatogenic cells. In the present study we have analyzed the production of PAs by retinoid-treated rat Sertoli cells. In addition, because retinoids modulate the response of Sertoli cells to FSH either potentiating or antagonizing its action, we have investigated a possible modulation of FSH-stimulated PA production. Under basal conditions, Sertoli cells, isolated from prepubertal rats, secrete predominantly uPA. A significant dose-dependent inhibition of uPA activity was observed after treatment with retinol, while no significant effect was detected upon tPA secretion. When Sertoli cells were cultured in the presence of 0.25 mu M retinol, a significant inhibition of uPA activity was evident after 16 h of treatment and reached approximately 80% after 48 h of treatment. The analysis of the mRNA levels revealed that retinol induces an inhibition of the steady-state levels of uPA mRNA without affecting those of tPA. Moreover, retinol affected uPA mRNA levels by increasing mRNA turnover. The effect of retinoids on Sertoli cells isolated from older animals was less evident, possibly due to the reduced production of uPA with the increase of age of the donor animals. Our results on the effect of retinoids upon Sertoli cell uPA production reinforce the importance of retinoids in the control of postnatal testis development

    Plasminogen activator in the rat ovary. Production and gonadotropin regulation of the enzyme in granulosa and thecal cells

    No full text
    The production of plasminogen activator by ovarian granulosa cells has been previously reported to be temporally correlated with ovulation in the rat and to be under hormonal control of gonadotropins. We have examined the type of plasminogen activator produced by granulosa cells and also investigated other ovarian cell types for synthesis of this enzyme. Using antibodies specific for tissue-type or urokinase-type plasminogen activator, we have found that granulosa cells produce exclusively the tissue-type enzyme. However, in cultures of whole follicles isolated from the ovary, there is primarily synthesis of urokinase-type plasminogen activator. Examination of other isolated ovarian cell types has demonstrated that thecal cells secrete the urokinase-type plasminogen activator and that the production of this enzyme is also regulated by gonadotropins and temporally correlated with ovulation. These results suggest that ovulation requires both types of plasminogen activator and that the neighboring granulosa and thecal cells cooperate to ensure rupture of the follicle wall and unimpeded passage of the ovum into the oviduct

    Cell–cell interaction and oocyte growth

    No full text
    • …
    corecore