2,051 research outputs found
Alternating magnetic anisotropy of Li(Li)N with = Mn, Fe, Co, and Ni
Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be
substituted for Li in single crystalline Li(Li)N. Isothermal and
temperature-dependent magnetization measurements reveal local magnetic moments
with magnitudes significantly exceeding the spin-only value. The additional
contributions stem from unquenched orbital moments that lead to rare-earth-like
behavior of the magnetic properties. Accordingly, extremely large magnetic
anisotropies have been found. Most notably, the magnetic anisotropy alternates
as easy-plane easy-axis easy-plane
easy-axis when progressing from = Mn Fe Co
Ni. This behavior can be understood based on a perturbation
approach in an analytical, single-ion model. The calculated magnetic
anisotropies show a surprisingly good agreement with the experiment and capture
the basic features observed for the different transition metals.Comment: 5 pages, 3 figures, published as PRB Rapid Communication, Fig. 3
update
Signatures of quantum criticality in the thermopower of Ba(Fe(1-x)Co(x))2As2
We demonstrate that the thermopower (S) can be used to probe the spin
fluctuations (SFs) in proximity to the quantum critical point (QCP) in Fe-based
superconductors. The sensitivity of S to the entropy of charge carriers allows
us to observe an increase of S/T in Ba(Fe(1-x)Co(x))2As2 close to the
spin-density-wave (SDW) QCP. This behavior is due to the coupling of low-energy
conduction electrons to two-dimensional SFs, similar to heavy-fermion systems.
The low-temperature enhancement of S/T in the Co substitution range 0.02 < x <
0.1 is bordered by two Lifshitz transitions, and it corresponds to the
superconducting region, where a similarity between the electron and
non-reconstructed hole pockets exists. The maximal S/T is observed in proximity
to the commensurate-to-incommensurate SDW transition, for critical x_c ~ 0.05,
close to the highest superconducting T_c. This analysis indicates that low-T
thermopower is influenced by critical spin fluctuations which are important for
the superconducting mechanism
An imaging vector magnetograph for the next solar maximum
Researchers describe the conceptual design of a new imaging vector magnetograph currently being constructed at the University of Hawaii. The instrument combines a modest solar telescope with a rotating quarter-wave plate, an acousto-optical tunable prefilter as a blocker for a servo-controlled Fabry-Perot etalon, CCD cameras, and on-line digital image processing. Its high spatial resolution (1/2 arcsec pixel size) over a large field of view (5 by 5 arcmin) will be sufficient to significantly measure, for the first time, the magnetic energy dissipated in major solar flares. Its millisecond tunability and wide spectral range (5000 to 7000 A) enable nearly simultaneous vector magnetic field measurements in the gas-pressure-dominated photosphere and magnetically-dominated chromosphere, as well as effective co-alignment with Solar-A's X ray images. Researchers expect to have the instrument in operation at Mees Solar Observatory (Haleakala) in early 1991. They have chosen to use tunable filters as wavelength-selection elements in order to emphasize the spatial relationships between magnetic field elements, and to permit construction of a compact, efficient instrument. This means that spectral information must be obtained from sequences of images, which can cause line profile distortions due to effects of atmospheric seeing
Intrinsic pinning on structural domains in underdoped single crystals of Ba(FeCo)As
Critical current density was studied in single crystals of
Ba(FeCo)As for the values of spanning the entire doping
phase diagram. A noticeable enhancement was found for slightly underdoped
crystals with the peak at . Using a combination of polarized-light
imaging, x-ray diffraction and magnetic measurements we associate this behavior
with the intrinsic pinning on structural domains in the orthorhombic phase.
Domain walls extend throughout the sample thickness in the direction of
vortices and act as extended pinning centers. With the increasing domain
structure becomes more intertwined and fine due to a decrease of the
orthorhombic distortion. This results in the energy landscape with maze-like
spatial modulations favorable for pinning. This finding shows that iron-based
pnictide superconductors, characterized by high values of the transition
temperature, high upper critical fields, and low anisotropy may intrinsically
have relatively high critical current densities.Comment: estimation of Jc correcte
Thermal expansion and effect of pressure on superconductivity in CuxTiSe2
We report measurements of thermal expansion on a number of polycrystalline
CuxTiSe2 samples corresponding to the parts of x - T phase diagram with
different ground states, as well as the pressure dependence of the
superconducting transition temperature for samples with three different values
of Cu-doping. Thermal expansion data suggest that the x - T phase diagram may
be more complex than initially reported. T_c data at elevated pressure can be
scaled to the ambient pressure CuxTiSe2 phase diagram, however, significantly
different scaling factors are needed to accommodate the literature data on the
charge density wave transition suppression under pressure
- …