2,090 research outputs found

    An imaging vector magnetograph for the next solar maximum

    Get PDF
    Researchers describe the conceptual design of a new imaging vector magnetograph currently being constructed at the University of Hawaii. The instrument combines a modest solar telescope with a rotating quarter-wave plate, an acousto-optical tunable prefilter as a blocker for a servo-controlled Fabry-Perot etalon, CCD cameras, and on-line digital image processing. Its high spatial resolution (1/2 arcsec pixel size) over a large field of view (5 by 5 arcmin) will be sufficient to significantly measure, for the first time, the magnetic energy dissipated in major solar flares. Its millisecond tunability and wide spectral range (5000 to 7000 A) enable nearly simultaneous vector magnetic field measurements in the gas-pressure-dominated photosphere and magnetically-dominated chromosphere, as well as effective co-alignment with Solar-A's X ray images. Researchers expect to have the instrument in operation at Mees Solar Observatory (Haleakala) in early 1991. They have chosen to use tunable filters as wavelength-selection elements in order to emphasize the spatial relationships between magnetic field elements, and to permit construction of a compact, efficient instrument. This means that spectral information must be obtained from sequences of images, which can cause line profile distortions due to effects of atmospheric seeing

    Anisotropy Reversal of the Upper Critical Field at Low Temperatures and Spin-Locked Superconductivity in K2Cr3As3

    Get PDF
    We report the first measurements of the anisotropic upper critical field Hc2(T)H_{c2}(T) for K2_{2}Cr3_{3}As3_{3} single crystals up to 60 T and T>0.6T > 0.6 K. Our results show that the upper critical field parallel to the Cr chains, Hc2(T)H_{c2}^\parallel (T), exhibits a paramagnetically-limited behavior, whereas the shape of the Hc2(T)H_{c2}^\perp (T) curve (perpendicular to the Cr chains) has no evidence of paramagnetic effects. As a result, the curves Hc2(T)H_{c2}^\perp (T) and Hc2(T)H_{c2}^\parallel(T) cross at T4T\approx 4 K, so that the anisotropy parameter γH(T)=Hc2/Hc2(T)\gamma_H(T)=H_{c2}^\perp/H_{c2}^\parallel (T) increases from γH(Tc)0.35\gamma_H(T_c)\approx 0.35 near TcT_c to γH(0)1.7\gamma_H(0)\approx 1.7 at 0.6 K. This behavior of Hc2(T)H_{c2}^\|(T) is inconsistent with triplet superconductivity but suggests a form of singlet superconductivity with the electron spins locked onto the direction of Cr chains

    Field Dependence of the Superconducting Basal Plane Anisotropy of TmNi2B2C

    Get PDF
    The superconductor TmNi2B2C possesses a significant four-fold basal plane anisotropy, leading to a square Vortex Lattice (VL) at intermediate fields. However, unlike other members of the borocarbide superconductors, the anisotropy in TmNi2B2C appears to decrease with increasing field, evident by a reentrance of the square VL phase. We have used Small Angle Neutron Scattering measurements of the VL to study the field dependence of the anisotropy. Our results provide a direct, quantitative measurement of the decreasing anisotropy. We attribute this reduction of the basal plane anisotropy to the strong Pauli paramagnetic effects observed in TmNi2B2C and the resulting expansion of vortex cores near Hc2.Comment: 8 pages, 6 figures, 1 tabl

    Systematic effects of carbon doping on the superconducting properties of Mg(B1x_{1-x}Cx_x)2_2

    Full text link
    The upper critical field, Hc2H_{c2}, of Mg(B1x_{1-x}Cx_x)2_2 has been measured in order to probe the maximum magnetic field range for superconductivity that can be attained by C doping. Carbon doped boron filaments are prepared by CVD techniques, and then these fibers are then exposed to Mg vapor to form the superconducting compound. The transition temperatures are depressed about 1K/1 K/% C and Hc2(T=0)H_{c2}(T=0) rises at about 5T/5 T/% C. This means that 3.5% C will depress TcT_c from 39.2K39.2 K to 36.2K36.2 K and raise Hc2(T=0)H_{c2}(T=0) from 16.0T16.0 T to 32.5T32.5 T. Higher fields are probably attainable in the region of 5% C to 7% C. These rises in Hc2H_{c2} are accompanied by a rise in resistivity at 40K40 K from about 0.5μΩcm0.5 \mu \Omega cm to about 10μΩcm10 \mu \Omega cm. Given that the samples are polycrystalline wire segments, the experimentally determined Hc2(T)H_{c2}(T) curves represent the upper Hc2(T)H_{c2}(T) manifold associated with HcH\perp c

    Magnetic field induced orientation of superconducting MgB2_2 crystallites determined by X-ray diffraction

    Get PDF
    X-ray diffraction studies of fine polycrystalline samples of MgB2_2 in the superconducting state reveal that crystals orient with their \emph{c}-axis in a plane normal to the direction of the applied magnetic field. The MgB2_2 samples were thoroughly ground to obtain average grain size 5 - 10 μ\mum in order to increase the population of free single crystal grains in the powder. By monitoring Bragg reflections in a plane normal to an applied magnetic field we find that the powder is textured with significantly stronger (\emph{0,0,l}) reflections in comparison to (\emph{h,k,0}), which remain essentially unchanged. The orientation of the crystals with the \emph{ab}-plane parallel to the magnetic field at all temperatures below TcT_c demonstrates that the sign of the torque under magnetic field does not alter, in disagreement with current theoretical predictions

    Magnetic excitations in underdoped Ba(Fe1-xCox)2As2 with x=0.047

    Get PDF
    The magnetic excitations in the paramagnetic-tetragonal phase of underdoped Ba(Fe0.953Co0.047)2As2, as measured by inelastic neutron scattering, can be well described by a phenomenological model with purely diffusive spin dynamics. At low energies, the spectrum around the magnetic ordering vector Q_AFM consists of a single peak with elliptical shape in momentum space. At high energies, this inelastic peak is split into two peaks across the direction perpendicular to Q_AFM. We use our fittings to argue that such a splitting is not due to incommensurability or propagating spin-wave excitations, but is rather a consequence of the anisotropies in the Landau damping and in the magnetic correlation length, both of which are allowed by the tetragonal symmetry of the system. We also measure the magnetic spectrum deep inside the magnetically-ordered phase, and find that it is remarkably similar to the spectrum of the paramagnetic phase, revealing the strongly overdamped character of the magnetic excitations.Comment: 12 pages, 7 figure

    Effect of field dependent core size on reversible magnetization of high-κ\kappa superconductors

    Full text link
    The field dependence of the vortex core size ξ(B)\xi(B) is incorporated in the London model, in order to describe reversible magnetization M(B,T)M(B,T) for a number of materials with large Ginzburg-Landau parameter κ\kappa. The dependence ξ(B)\xi(B) is directly related to deviations in M(lnB)M(\ln B) from linear behavior prescribed by the standard London model. A simple method to extract ξ(B)\xi(B) from the magnetization data is proposed. For most materials examined, ξ(B)\xi(B) so obtained decreases with increasing field and is in qualitative agreement both with behavior extracted from μ\muSR and small angle neutron scattering data and with that predicted theoretically

    Unpaired Electrons in the Heavy-Fermion Superconductor CeCoIn_{5}

    Full text link
    Thermal conductivity and specific heat were measured in the superconducting state of the heavy fermion material Ce_{1-x}La_{x}CoIn_{5}. With increasing impurity concentration x, the suppression of T_{c} is accompanied by the increase in the residual electronic specific heat expected of a d-wave superconductor, but it occurs in parallel with a decrease in residual electronic thermal conductivity. This contrasting behavior reveals the presence of uncondensed electrons coexisting with nodal quasiparticles. An extreme multiband scenario is proposed, with a d-wave superconducting gap on the heavy-electron sheets of the Fermi surface and a negligible gap on the light, three-dimensional pockets.Comment: 4 pages, 3 figure

    Superconductivity in Dense MgB2MgB_2 Wires

    Get PDF
    MgB2MgB_2 becomes superconducting just below 40 K. Whereas porous polycrystalline samples of MgB2MgB_2 can be synthesized from boron powders, in this letter we demonstrate that dense wires of MgB2MgB_2 can be prepared by exposing boron filaments to MgMg vapor. The resulting wires have a diameter of 160 μm{\mu}m, are better than 80% dense and manifest the full χ=1/4π\chi = -1/4{\pi} shielding in the superconducting state. Temperature-dependent resistivity measurements indicate that MgB2MgB_2 is a highly conducting metal in the normal state with ρ(40K)\rho (40 K) = 0.38 μOhm\mu Ohm-cmcm. Using this value, an electronic mean free path, l600 A˚l \approx 600~\AA can be estimated, indicating that MgB2MgB_2 wires are well within the clean limit. TcT_c, Hc2(T)H_{c2}(T), and JcJ_c data indicate that MgB2MgB_2 manifests comparable or better superconducting properties in dense wire form than it manifests as a sintered pellet.Comment: Figures' layout fixe
    corecore