579 research outputs found

    Enhanced deuteron coalescence probability in jets

    No full text
    The transverse-momentum (pT) spectra and coalescence parameters B2 of (anti)deuterons are measured in pp collisions at s√=13 TeV for the first time in and out of jets. In this measurement, the direction of the leading particle with the highest pT in the event (pleadT>5 GeV/c) is used as an approximation for the jet axis. The event is consequently divided into three azimuthal regions and the jet signal is obtained as the difference between the Toward region, that contains jet fragmentation products in addition to the underlying event (UE), and the Transverse region, which is dominated by the UE. The coalescence parameter in the jet is found to be approximately a factor of 10 larger than that in the underlying event. This experimental observation is consistent with the coalescence picture and can be attributed to the smaller average phase-space distance between nucleons inside the jet cone as compared to the underlying event. The results presented in this Letter are compared to predictions from a simple nucleon coalescence model, where the phase space distributions of nucleons are generated using PYTHIA 8 with the Monash 2013 tuning, and to predictions from a deuteron production model based on ordinary nuclear reactions with parametrized energy-dependent cross sections tuned on data. The latter model is implemented in PYTHIA 8.3. Both models reproduce the observed large difference between in-jet and out-of-jet coalescence parameters, although the almost flat trend of the BJet2 is not reproduced by the models, which instead give a decreasing trend

    Measurements of long-range two-particle correlation over a wide pseudorapidity range in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Correlations in azimuthal angle extending over a long range in pseudorapidity between particles, usually called the "ridge" phenomenon, were discovered in heavy-ion collisions, and later found in pp and p−Pb collisions. In large systems, they are thought to arise from the expansion (collective flow) of the produced particles. Extending these measurements over a wider range in pseudorapidity and final-state particle multiplicity is important to understand better the origin of these long-range correlations in small-collision systems. In this Letter, measurements of the long-range correlations in p−Pb collisions at sNN−−−√=5.02 TeV are extended to a pseudorapidity gap of Δη∌8 between particles using the ALICE, forward multiplicity detectors. After suppressing non-flow correlations, e.g., from jet and resonance decays, the ridge structure is observed to persist up to a very large gap of Δη∌8 for the first time in p−Pb collisions. This shows that the collective flow-like correlations extend over an extensive pseudorapidity range also in small-collision systems such as p−Pb collisions. The pseudorapidity dependence of the second-order anisotropic flow coefficient, v2({\eta}), is extracted from the long-range correlations. The v2(η) results are presented for a wide pseudorapidity range of −3.1<η<4.8 in various centrality classes in p−Pb collisions. To gain a comprehensive understanding of the source of anisotropic flow in small-collision systems, the v2(η) measurements are compared to hydrodynamic and transport model calculations. The comparison suggests that the final-state interactions play a dominant role in developing the anisotropic flow in small-collision systems

    Neutron emission in ultraperipheral Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208Pb nuclei at sNN−−−√=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN−−−√=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh)

    K∗(892)0 and φ(1020) production in p–Pb collisions at √sNN = 8.16 TeV

    No full text
    The production of K∗(892)0 and ϕ(1020) resonances has been measured in p-Pb collisions at sNN−−−√ = 8.16 TeV using the ALICE detector. Resonances are reconstructed via their hadronic decay channels in the rapidity interval −0.5 8 GeV/c), the RpPb values of all hadrons are consistent with unity within uncertainties. The RpPb of K∗(892)0 and ϕ(1020) at sNN−−−√ = 8.16 and 5.02 TeV show no significant energy dependence

    Elliptic flow of electrons from beauty-hadron decays in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The elliptic flow of electrons from beauty hadron decays at midrapidity (|y| < 0.8) is measured in Pb-Pb collisions at sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The azimuthal distribution of the particles produced in the collisions can be parameterized with a Fourier expansion, in which the second harmonic coefficient represents the elliptic flow, v2. The v2 coefficient is measured for the first time in transverse momentum (pT) range 1.3-6 GeV/c in the centrality class 30-50%. The measurement of electrons from beauty-hadron decays exploits their larger mean proper decay length cτ≈ 500 ÎŒm compared to that of charm hadrons and most of the other background sources. The v2 of electrons from beauty hadron decays at midrapidity is found to be positive with a significance of 3.75σ. The results provide insights on the degree of thermalization of beauty quarks in the medium. A model assuming full thermalization of beauty quarks is strongly disfavoured by the measurement at high pT, but is in agreement with the results at low pT. Transport models including substantial interactions of beauty quarks with an expanding strongly-interacting medium describe the measurement

    Measurement of the J/ψ polarization with respect to the event plane in Pb–Pb collisions at the LHC

    No full text
    We study the polarization of inclusive J/ψ produced in Pb−Pb collisions at sNN−−−√=5.02 TeV at the LHC in the dimuon channel, via the measurement of the angular distribution of its decay products. We perform the study in the rapidity region 2.5<y<4, for three transverse momentum intervals (2<pT<4, 4<pT<6, 6<pT<10 GeV/c) and as a function of the centrality of the collision for 2<pT<6 GeV/c. For the first time, the polarization is measured with respect to the event plane of the collision, by considering the angle between the positive-charge decay muon in the J/ψ rest frame and the axis perpendicular to the event-plane vector in the laboratory system. A small transverse polarization is measured, with a significance reaching 3.9σ at low pT and for intermediate centrality values. The polarization could be connected with the behaviour of the quark−gluon plasma, formed in Pb−Pb collisions, as a rotating fluid with large vorticity, as well as with the existence of a strong magnetic field in the early stage of its formation
    • 

    corecore