758 research outputs found

    Bradysia hygida (Diptera, Sciaridae) presents two eukaryotic Elongation Factor 1A gene homologues: partial characterization of the eukaryotic Elongation Factor 1A-F1 gene

    Get PDF
    Elongation factor 1A is a highly conserved protein that participates in translation. We report the occurrence of two genes homologous to the eukaryotic Elongation Factor 1A in Bradysia hygida and describe the partial cloning and characterization of the B. hygida eukaryotic Elongation Factor 1A-F1 (BheEF1A-F1) gene. The pattern of BheEF1A-F1 expression in the salivary gland at the end of the fourth larval instar was investigated using real-time PCR. The results showed that BheEF1A-F1 expression levels are relatively constant at the time when rapid changes in protein synthesis occur in this tissue. In situ hybridization experiments coupled to Southern blot analyses showed that the BheEF1A-F1 gene is located at position 3d of the A chromosome and a second gene homologous to eEF1A is located at position 6a of the X chromosome. Southern blot analyses showed that both the BheEF1A-F1 gene and the second gene homologous to eEF1A constitute non-amplified genes. The present results contribute to the molecular characterization of a sciarid eEF1A gene

    O SALMO 23

    Get PDF
    A seguir, apresentamos uma tradução nossa do Salmo 233 onde procuramos manter o sentido original expresso pelo Rei David: A confiança irrestrita em IHVH como condição sine quanon para a Regeneração (Salvação) da Nefesh, um dos níveis de nossa Alma4. Também restabelecemos, nesta tradução, a frase original, sempre modificada ou omitida pelas tradiçõesreligiosas, “Minha nefesh fará retornar” (Nafshi Ieshovev)

    An Electrochemical Platform for the Carbon Dioxide Capture and Conversion to Syngas

    Get PDF
    We report on a simple electrochemical system able to capture gaseous carbon dioxide from a gas mixture and convert it into syngas. The capture/release module is implemented via regeneration of NaOH and acidification of NaHCO3 inside a four-chamber electrochemical flow cell employing Pt foils as catalysts, while the conversion is carried out by a coupled reactor that performs electrochemical reduction of carbon dioxide using ZnO as a catalyst and KHCO3 as an electrolyte. The capture module is optimized such that, powered by a current density of 100 mA/cm2 , from a mixture of the CO2–N2 gas stream, a pure and stable CO2 outlet flow of 4–5 mL/min is obtained. The conversion module is able to convert the carbon dioxide into a mixture of gaseous CO and H2 (syngas) with a selectivity for the carbon monoxide of 56%. This represents the first all-electrochemical system for carbon dioxide capture and conversion

    Recombinant rubella vectors elicit SIV Gag-specific T cell responses with cytotoxic potential in rhesus macaques

    Get PDF
    AbstractLive-attenuated rubella vaccine strain RA27/3 has been demonstrated to be safe and immunogenic in millions of children. The vaccine strain was used to insert SIV gag sequences and the resulting rubella vectors were tested in rhesus macaques alone and together with SIV gag DNA in different vaccine prime-boost combinations. We previously reported that such rubella vectors induce robust and durable SIV-specific humoral immune responses in macaques. Here, we report that recombinant rubella vectors elicit robust de novo SIV-specific cellular immune responses detectable for >10 months even after a single vaccination. The antigen-specific responses induced by the rubella vector include central and effector memory CD4+ and CD8+ T cells with cytotoxic potential. Rubella vectors can be administered repeatedly even after vaccination with the rubella vaccine strain RA27/3. Vaccine regimens including rubella vector and SIV gag DNA in different prime-boost combinations resulted in robust long-lasting cellular responses with significant increase of cellular responses upon boost. Rubella vectors provide a potent platform for inducing HIV-specific immunity that can be combined with DNA in a prime-boost regimen to elicit durable cellular immunity
    • …
    corecore