67 research outputs found
Spatio-temporal ultrasound beam modulation to sequentially achieve multiple foci with a single planar monofocal lens
[EN] Ultrasound focusing is a hot topic due to its multiple applications in many fields, including biomedical imaging, thermal ablation of cancerous tissues, and non destructive testing in industrial environments. In such applications, the ability to control the focal distance of the ultrasound device in real-time is a key advantage over conventional devices with fixed focal parameters. Here, we present a method to achieve multiple time-modulated ultrasound foci using a single planar monofocal Fresnel Zone Plate. The method takes advantage of the focal distance linear dependence on the operating frequency of this kind of lenses to design a sequence of contiguous modulated rectangular pulses that achieve different focal distances and intensities as a function of time. Both numerical simulations and experimental results are presented, demonstrating the feasibility and potential of this technique.This work has been supported by Spanish MICINN project number RTI2018-100792-B-I00 and Generalitat Valenciana project AICO/2020/139. S.P.-L. acknowledges financial support from Universitat Politecnica de Valencia Grant program PAID-01-18.PĂ©rez-LĂłpez, S.; Fuster Escuder, JM.; Candelas Valiente, P. (2021). Spatio-temporal ultrasound beam modulation to sequentially achieve multiple foci with a single planar monofocal lens. Scientific Reports. 11(1):1-7. https://doi.org/10.1038/s41598-021-92849-xS17111Schmerr, L. W. Fundamentals of Ultrasonic Nondestructive Evaluation. Springer Series in Measurement Science and Technology (Springer International Publishing, 2016).Azhari, H. Basics of Biomedical Ultrasound for Engineers (Wiley, 2010).Fan, X. & Hynynen, K. Ultrasound surgery using multiple sonications—Treatment time considerations. Ultrasound Med. Biol. 22, 471–482. https://doi.org/10.1016/0301-5629(96)00026-9 (1996).ter Haar, G. & Coussios, C. High intensity focused ultrasound: Physical principles and devices. Int. J. Hyperth. 23, 89–104. https://doi.org/10.1080/02656730601186138 (2007).Guo, S., Jing, Y. & Jiang, X. Temperature rise in tissue ablation using multi-frequency ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60, 1699–1707. https://doi.org/10.1109/TUFFC.2013.2751 (2013).Ebbini, E. & Cain, C. Multiple-focus ultrasound phased-array pattern synthesis: Optimal driving-signal distributions for hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 36, 540–548. https://doi.org/10.1109/58.31798 (1989).Casper, A., Liu, D. & Ebbini, E. S. Realtime control of multiple-focus phased array heating patterns based on noninvasive ultrasound thermography. IEEE Trans. Biomed. Eng. 59, 95–105. https://doi.org/10.1109/TBME.2011.2162105 (2012).Ilovitsh, A., Ilovitsh, T., Foiret, J., Stephens, D. N. & Ferrara, K. W. Simultaneous axial multifocal imaging using a single acoustical transmission: A practical implementation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 66, 273–284. https://doi.org/10.1109/TUFFC.2018.2885080 (2019).Lalonde, R., Worthington, A. & Hunt, J. Field conjugate acoustic lenses for ultrasound hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 40, 592–602. https://doi.org/10.1109/58.238113 (1993).Lalonde, R. & Hunt, J. Variable frequency field conjugate lenses for ultrasound hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42, 825–831. https://doi.org/10.1109/58.464838 (1995).Brown, M. D., Allen, T. J., Cox, B. T. & Treeby, B. E. Control of optically generated ultrasound fields using binary amplitude holograms. in IEEE International Ultrasonics Symposium, IUS, 1037–1040. https://doi.org/10.1109/ULTSYM.2014.0254 (IEEE, 2014).Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522. https://doi.org/10.1038/nature19755 (2016).Brown, M. D., Cox, B. T. & Treeby, B. E. Design of multi-frequency acoustic kinoforms. Appl. Phys. Lett. 111, 244101. https://doi.org/10.1063/1.5004040 (2017).JimĂ©nez-GambĂn, S., JimĂ©nez, N., Benlloch, J. M. & Camarena, F. Holograms to focus arbitrary ultrasonic fields through the skull. Phys. Rev. Appl. 12, 014016. https://doi.org/10.1103/PhysRevApplied.12.014016 (2019).Young, M. Zone plates and their aberrations. J. Opt. Soc. Am. 62, 972. https://doi.org/10.1364/JOSA.62.000972 (1972).Rodrigues Ribeiro, R. S., Dahal, P., Guerreiro, A., Jorge, P. A. S. & Viegas, J. Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Sci. Rep. 7, 4485. https://doi.org/10.1038/s41598-017-04490-2 (2017).Kim, H. et al. Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light. Opt. Express 25, 30290. https://doi.org/10.1364/OE.25.030290 (2017).Kirz, J. Phase zone plates for X-rays and the extreme UV. J. Opt. Soc. Am. 64, 301–309. https://doi.org/10.1364/JOSA.64.000301 (1974).Yashiro, W., Takeda, Y., Takeuchi, A., Suzuki, Y. & Momose, A. Hard-X-ray phase-difference microscopy using a fresnel zone plate and a transmission grating. Phys. Rev. Lett. 103, 180801. https://doi.org/10.1103/PhysRevLett.103.180801 (2009).Hristov, H. D. & Herben, M. H. Millimeter-wave fresnel-zone plate lens and antenna. IEEE Trans. Microw. Theory Tech. 43, 2779–2785. https://doi.org/10.1109/22.475635 (1995).Hristov, H. D. & Rodriguez, J. M. Design equation for multidielectric fresnel zone plate lens. IEEE Microw. Wirel. Components Lett. 22, 574–576. https://doi.org/10.1109/LMWC.2012.2224099 (2012).Chao, G., Auld, B. A. & Winslow, D. K. Focusing and scanning of acoustic beams with fresnel zone plates. in 1972 Ultrasonics Symposium, 140–143. https://doi.org/10.1109/ultsym.1972.196048 (IEEE, 1972).Farnow, S. A. & Auld, B. A. Acoustic fresnel zone plate transducers. Appl. Phys. Lett. 25, 681–682. https://doi.org/10.1063/1.1655359 (1974).Farnow, S. A. & Auld, B. A. An acoustic phase plate imaging device. in Acoustical Holography, Vol. 6 (ed. Booth, N.) 259–273. https://doi.org/10.1007/978-1-4615-8216-8_14 (Springer US, 1975).Yamada, K. & Shimizu, H. Planar-structure focusing lens for acoustic microscope. in Ultrasonics Symposium Proceedings, 755–758. https://doi.org/10.1109/ultsym.1985.198612 (IEEE, 1985).Calvo, D. C., Thangawng, A. L., Nicholas, M. & Layman, C. N. Thin Fresnel zone plate lenses for focusing underwater sound. Appl. Phys. Lett. 107, 014103. https://doi.org/10.1063/1.4926607 (2015).JimĂ©nez, N., Romero-GarcĂa, V., GarcĂa-Raffi, L. M., Camarena, F. & Staliunas, K. Sharp acoustic vortex focusing by Fresnel-spiral zone plates. Appl. Phys. Lett. 112, 204101. https://doi.org/10.1063/1.5029424 (2018).Monsoriu, J. A. et al. Bifocal fibonacci diffractive lenses. IEEE Photon. J. 5, 3400106–3400106. https://doi.org/10.1109/JPHOT.2013.2248707 (2013).PĂ©rez-LĂłpez, S., Fuster, J. M. & Candelas, P. M-Bonacci zone plates for ultrasound focusing. Sensors 19, 4313. https://doi.org/10.3390/s19194313 (2019).Saavedra, G., Furlan, W. D. & Monsoriu, J. A. Fractal zone plates. Opt. Lett. 28, 971. https://doi.org/10.1364/ol.28.000971 (2003).PĂ©rez-LĂłpez, S., Fuster, J. M., Candelas, P. & Rubio, C. Fractal lenses based on Cantor binary sequences for ultrasound focusing applications. Ultrasonics 99, 105967. https://doi.org/10.1016/j.ultras.2019.105967 (2019).TarrazĂł-Serrano, D., PĂ©rez-LĂłpez, S., Candelas, P., Uris, A. & Rubio, C. Acoustic focusing enhancement in fresnel zone plate lenses. Sci. Rep. 9, 7067. https://doi.org/10.1038/s41598-019-43495-x (2019).Fuster, J. M., Candelas, P., Castiñeira-Ibáñez, S., PĂ©rez-LĂłpez, S. & Rubio, C. Analysis of fresnel zone plates focusing dependence on operating frequency. Sensors (Switzerland) 17, 2809. https://doi.org/10.3390/s17122809 (2017).Muelas-Hurtado, R. D., Ealo, J. L. & Volke-SepĂşlveda, K. Active-spiral Fresnel zone plate with tunable focal length for airborne generation of focused acoustic vortices. Appl. Phys. Lett. 116, 114101. https://doi.org/10.1063/1.5137766 (2020).Xia, X. et al. Ultrasonic tunable focusing by a stretchable phase-reversal Fresnel zone plate. Appl. Phys. Lett. 117, 021904. https://doi.org/10.1063/5.0018663 (2020).PĂ©rez-LĂłpez, S., TarrazĂł-Serrano, D., Dolmatov, D. O., Rubio, C. & Candelas, P. Transient analysis of fresnel zone plates for ultrasound focusing applications. Sensors 20, 6824. https://doi.org/10.3390/s20236824 (2020).Liu, D.-L. & Waag, R. Propagation and backpropagation for ultrasonic wavefront design. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44, 1–13. https://doi.org/10.1109/58.585184 (1997)
Design of Acoustic Bifocal Lenses Using a Fourier-Based Algorithm
[EN] In this work, we develop a new design method based on fast Fourier transform (FFT) for implementing zone plates (ZPs) with bifocal focusing profiles. We show that the FFT of the governing binary sequence provides a discrete sequence of the same length, which indicates the location of the main foci at the ZP focusing profile. Then, using reverse engineering and establishing a target focusing profile, we are capable of generating a binary sequence that provides a ZP with the desired focusing profile. We show that this design method, based on the inverse fast Fourier transform (IFFT), is very flexible and powerful and allows to tailor the design of bifocal ZPs to achieve focusing profiles with the desired foci locations and resolutions. The key advantage of our design algorithm, compared to other alternatives presented in previous works, is that our method provides bifocal focusing profiles with an absolute control of the foci locations. Moreover, although we analyze the performance of this novel design algorithm for underwater ultrasonics, it can also be successfully extended to different fields of physics, such as optics or microwaves, where ZPs are widely employed.This work has been supported by the Spanish MICINN RTI2018-100792-B-I00 project and Generalitat Valenciana AICO/2020/139 project.Fuster Escuder, JM.; PĂ©rez-LĂłpez, S.; Candelas Valiente, P. (2021). Design of Acoustic Bifocal Lenses Using a Fourier-Based Algorithm. Sensors. 21(24):1-17. https://doi.org/10.3390/s21248285S117212
M-Bonacci Zone Plates for Ultrasound Focusing
[EN] In this work, we present a thorough analysis on M-bonacci zone plates for ultrasound focusing applications. These planar lenses are capable of providing bifocal focusing profiles with equal intensity in both foci and become very appealing for a wide range of scenarios including medical and industrial applications. We show that in high-wavelength domains, such as acoustics or microwaves, the separation between both foci can be finely adjusted at the expense of slightly increasing the distortion of the focusing profile, and we introduce a design parameter to deal with this issue and simplify the design process of these lenses. Experimental measurements are in good agreement with numerical simulations and demonstrate the potential of M-bonacci lenses in ultrasound focusing applications.This work has been supported by Spanish MICINN RTI2018-100792-B-I00 project. S.P.-L. acknowledges financial support from Universitat Politecnica de Valencia grant program PAID-01-18.PĂ©rez-LĂłpez, S.; Fuster Escuder, JM.; Candelas Valiente, P. (2019). M-Bonacci Zone Plates for Ultrasound Focusing. Sensors. 19(19):1-13. https://doi.org/10.3390/s19194313S1131919Chen, J., Xiao, J., Lisevych, D., Shakouri, A., & Fan, Z. (2018). Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nature Communications, 9(1). doi:10.1038/s41467-018-07315-6MolerĂłn, M., Serra-Garcia, M., & Daraio, C. (2014). Acoustic Fresnel lenses with extraordinary transmission. Applied Physics Letters, 105(11), 114109. doi:10.1063/1.4896276Li, Y., Yu, G., Liang, B., Zou, X., Li, G., Cheng, S., & Cheng, J. (2014). Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials. Scientific Reports, 4(1). doi:10.1038/srep06830Lan, J., Li, Y., Xu, Y., & Liu, X. (2017). Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz Resonators. Scientific Reports, 7(1). doi:10.1038/s41598-017-10781-5JimĂ©nez-GambĂn, S., JimĂ©nez, N., Benlloch, J. M., & Camarena, F. (2019). Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Physical Review Applied, 12(1). doi:10.1103/physrevapplied.12.014016PĂ©rez-LĂłpez, S., Fuster, J. M., Minin, I. V., Minin, O. V., & Candelas, P. (2019). Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures. Scientific Reports, 9(1). doi:10.1038/s41598-019-50019-0Veira Canle, D., Kekkonen, T., Mäkinen, J., Puranen, T., Nieminen, H. J., Kuronen, A., … Hæggström, E. (2019). Practical realization of a sub-λ/2 acoustic jet. Scientific Reports, 9(1). doi:10.1038/s41598-019-41335-6Calvo, D. C., Thangawng, A. L., Nicholas, M., & Layman, C. N. (2015). Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters, 107(1), 014103. doi:10.1063/1.4926607PĂ©rez-LĂłpez, S., Fuster, J. M., Candelas, P., Rubio, C., & Belmar, F. (2018). On the use of phase correction rings on Fresnel zone plates with ultrasound piston emitters. Applied Physics Letters, 112(26), 264102. doi:10.1063/1.5036712TarrazĂł-Serrano, D., PĂ©rez-LĂłpez, S., Candelas, P., Uris, A., & Rubio, C. (2019). Acoustic Focusing Enhancement In Fresnel Zone Plate Lenses. Scientific Reports, 9(1). doi:10.1038/s41598-019-43495-xRodrigues Ribeiro, R. S., Dahal, P., Guerreiro, A., Jorge, P. A. S., & Viegas, J. (2017). Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Scientific Reports, 7(1). doi:10.1038/s41598-017-04490-2Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099Clement, G., Nomura, H., & Kamakura, T. (2015). Ultrasound field measurement using a binary lens. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62(2), 350-359. doi:10.1109/tuffc.2014.006800PĂ©rez-LĂłpez, S., Fuster, J. M., Candelas, P., & Rubio, C. (2019). On the focusing enhancement of Soret zone plates with ultrasound directional transducers. Applied Physics Letters, 114(22), 224101. doi:10.1063/1.5100219Monsoriu, J. A., Calatayud, A., Remon, L., Furlan, W. D., Saavedra, G., & Andres, P. (2013). Bifocal Fibonacci Diffractive Lenses. IEEE Photonics Journal, 5(3), 3400106-3400106. doi:10.1109/jphot.2013.2248707Machado, F., Ferrando, V., Furlan, W. D., & Monsoriu, J. A. (2017). Diffractive m-bonacci lenses. Optics Express, 25(7), 8267. doi:10.1364/oe.25.008267Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971Furlan, W. D., Saavedra, G., & Monsoriu, J. A. (2007). White-light imaging with fractal zone plates. Optics Letters, 32(15), 2109. doi:10.1364/ol.32.002109Mendoza-Yero, O., Fernández-Alonso, M., MĂnguez-Vega, G., Lancis, J., Climent, V., & Monsoriu, J. A. (2009). Fractal generalized zone plates. Journal of the Optical Society of America A, 26(5), 1161. doi:10.1364/josaa.26.001161Ferrando, V., GimĂ©nez, F., Furlan, W. D., & Monsoriu, J. A. (2015). Bifractal focusing and imaging properties of Thue–Morse Zone Plates. Optics Express, 23(15), 19846. doi:10.1364/oe.23.019846Xia, T., Cheng, S., & Tao, S. (2018). Generation of three equal-intensity foci based on a modified composite zone plate. Optik, 159, 150-156. doi:10.1016/j.ijleo.2018.01.071Fuster, J., PĂ©rez-LĂłpez, S., Candelas, P., & Rubio, C. (2018). Design of Binary-Sequence Zone Plates in High Wavelength Domains. Sensors, 18(8), 2604. doi:10.3390/s18082604Nie, L., Cai, X., Maslov, K., Garcia-Uribe, A., Anastasio, M. A., & Wang, L. V. (2012). Photoacoustic tomography through a whole adult human skull with a photon recycler. Journal of Biomedical Optics, 17(11), 110506. doi:10.1117/1.jbo.17.11.110506Chen, M., Knox, H. J., Tang, Y., Liu, W., Nie, L., Chan, J., & Yao, J. (2019). Simultaneous photoacoustic imaging of intravascular and tissue oxygenation. Optics Letters, 44(15), 3773. doi:10.1364/ol.44.003773Ter Haar, >Gail, & Coussios, C. (2007). High intensity focused ultrasound: Physical principles and devices. International Journal of Hyperthermia, 23(2), 89-104. doi:10.1080/02656730601186138Suo, D., Jin, Z., Jiang, X., Dayton, P. A., & Jing, Y. (2017). Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: AnIn vitrostudy. Applied Physics Letters, 110(2), 023703. doi:10.1063/1.4973857GyP, S., DY, L., & G, H. (2017). What is on the Horizon for Hyperthermic Cancer Therapy? Journal of Traditional Medicine & Clinical Naturopathy, 06(02). doi:10.4172/2573-4555.1000217Simon, J. C., Sapozhnikov, O. A., Khokhlova, V. A., Wang, Y.-N., Crum, L. A., & Bailey, M. R. (2012). Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound. Physics in Medicine and Biology, 57(23), 8061-8078. doi:10.1088/0031-9155/57/23/8061Jeong, J. S., Cannata, J. M., & Shung, K. K. (2010). Dual-Focus Therapeutic Ultrasound Transducer for Production of Broad Tissue Lesions. Ultrasound in Medicine & Biology, 36(11), 1836-1848. doi:10.1016/j.ultrasmedbio.2010.08.008Jong Seob Jeong. (2013). Dual concentric-sectored HIFU transducer with phase-shifted ultrasound excitation for expanded necrotic region: a simulation study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(5), 924-931. doi:10.1109/tuffc.2013.264
On the Role of the Geometrical Parameters in the Ultrasonic Transmission Through Plates with Subwavelength Holes Arrays
[EN] This paper presents an overview of the recents studies on the ultrasonic transmission through subwavelength holes arrays. The role of the geometrical parameters of the perforated plates in the transmission features has been reported by using a theoretical model under the rigid-solid assumption. It is shown that the transmission spectrum can be tailored by varying the geometrical parameters.This work has been supported by the Spanish MICINN (MAT2010-16879).Uris MartĂnez, A.; GĂłmez Lozano, V.; Candelas Valiente, P.; Belmar Ibáñez, F. (2014). On the Role of the Geometrical Parameters in the Ultrasonic Transmission Through Plates with Subwavelength Holes Arrays. Acta Acustica united with Acustica. 100(4):595-603. https://doi.org/10.3813/AAA.918739S595603100
On the focusing enhancement of Soret zone plates with ultrasound directional transducers
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).[EN] This work analyzes the influence of the distribution of transparent Fresnel regions over the focusing profile of Soret Zone Plates. It is shown that this effect becomes very significant in those fields where directional transducers are employed, such as microwaves or acoustics. A thorough analysis on both the lens transmission efficiency and the focusing enhancement factor is presented. Moreover, experimental measurements are also carried out, validating the theoretical model and demonstrating that the distribution of transparent Fresnel regions becomes a critical parameter in applications requiring directional emitters.This work was supported by Spanish MINECO TEC2015-70939-R and MICINN RTI2018-100792-B-I00 projects. S.P.-L. acknowledges financial support from Universitat Politecnica de Valencia Grant Program No. PAID-01-18.PĂ©rez-LĂłpez, S.; Fuster Escuder, JM.; Candelas Valiente, P.; Rubio Michavila, C. (2019). On the focusing enhancement of Soret zone plates with ultrasound directional transducers. Applied Physics Letters. 114(22):224101-1-224101-5. https://doi.org/10.1063/1.5100219S224101-1224101-511422Chen, J., Xiao, J., Lisevych, D., Shakouri, A., & Fan, Z. (2018). Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nature Communications, 9(1). doi:10.1038/s41467-018-07315-6Liang, Z., & Li, J. (2012). Extreme Acoustic Metamaterial by Coiling Up Space. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.114301Li, Y., Liang, B., Tao, X., Zhu, X., Zou, X., & Cheng, J. (2012). Acoustic focusing by coiling up space. Applied Physics Letters, 101(23), 233508. doi:10.1063/1.4769984Li, Y., Yu, G., Liang, B., Zou, X., Li, G., Cheng, S., & Cheng, J. (2014). Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials. Scientific Reports, 4(1). doi:10.1038/srep06830Xia, J., Zhang, X., Sun, H., Yuan, S., Qian, J., & Ge, Y. (2018). Broadband Tunable Acoustic Asymmetric Focusing Lens from Dual-Layer Metasurfaces. Physical Review Applied, 10(1). doi:10.1103/physrevapplied.10.014016Kipp, L., Skibowski, M., Johnson, R. L., Berndt, R., Adelung, R., Harm, S., & Seemann, R. (2001). Sharper images by focusing soft X-rays with photon sieves. Nature, 414(6860), 184-188. doi:10.1038/35102526Rodrigues Ribeiro, R. S., Dahal, P., Guerreiro, A., Jorge, P. A. S., & Viegas, J. (2017). Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Scientific Reports, 7(1). doi:10.1038/s41598-017-04490-2Hristov, H. D., & Herben, M. H. A. J. (1995). Millimeter-wave Fresnel-zone plate lens and antenna. IEEE Transactions on Microwave Theory and Techniques, 43(12), 2779-2785. doi:10.1109/22.475635Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099MolerĂłn, M., Serra-Garcia, M., & Daraio, C. (2014). Acoustic Fresnel lenses with extraordinary transmission. Applied Physics Letters, 105(11), 114109. doi:10.1063/1.4896276Calvo, D. C., Thangawng, A. L., Nicholas, M., & Layman, C. N. (2015). Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters, 107(1), 014103. doi:10.1063/1.4926607PĂ©rez-LĂłpez, S., Fuster, J. M., Candelas, P., Rubio, C., & Belmar, F. (2018). On the use of phase correction rings on Fresnel zone plates with ultrasound piston emitters. Applied Physics Letters, 112(26), 264102. doi:10.1063/1.503671
Design of Binary-Sequence Zone Plates in High Wavelength Domains
[EN] The design of zone plates is an important topic in many areas of physics, such as optics,
X-rays, microwaves or ultrasonics. In this paper, a zone plate design method, which provides high
flexibility in the shaping of the focusing profile, is analyzed. This flexibility is achieved through the use
of binary sequences that produce zone plates with different properties and applications. It is shown
that this binary-sequence method works properly at low wavelengths, but requires a modification
term to work accurately in high wavelength domains. This additional term extends this powerful
design method to any wavelength. Simulation results show acoustic focusing profiles for Fresnel,
Fibonacci and Cantor zone plates operating at a wavelength of 1.5 mm without any distortion.This work was supported by the Spanish MINECO (TEC2015-70939-R).Fuster Escuder, JM.; Pérez-López, S.; Candelas Valiente, P.; Rubio Michavila, C. (2018). Design of Binary-Sequence Zone Plates in High Wavelength Domains. Sensors. 18(8):2604-1-2604-8. https://doi.org/10.3390/s18082604S2604-12604-8188Tamura, S., Yasumoto, M., Kamijo, N., Takeuchi, A., Uesugi, K., Terada, Y., & Suzuki, Y. (2009). Quasi-blazed type multilayer zone plate for X-rays. Vacuum, 84(5), 578-580. doi:10.1016/j.vacuum.2009.03.037Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099Yang, R., Tang, W., & Hao, Y. (2011). A broadband zone plate lens from transformation optics. Optics Express, 19(13), 12348. doi:10.1364/oe.19.012348Calvo, D. C., Thangawng, A. L., Nicholas, M., & Layman, C. N. (2015). Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters, 107(1), 014103. doi:10.1063/1.4926607Stout-Grandy, S. M., Petosa, A., Minin, I. V., Minin, O. V., & Wight, J. (2006). A Systematic Study of Varying Reference Phase in the Design of Circular Fresnel Zone Plate Antennas. IEEE Transactions on Antennas and Propagation, 54(12), 3629-3637. doi:10.1109/tap.2006.886552Fuster, J., Candelas, P., Castiñeira-Ibáñez, S., Pérez-López, S., & Rubio, C. (2017). Analysis of Fresnel Zone Plates Focusing Dependence on Operating Frequency. Sensors, 17(12), 2809. doi:10.3390/s17122809Kennedy, J. E., Wu, F., ter Haar, G. R., Gleeson, F. V., Phillips, R. R., Middleton, M. R., & Cranston, D. (2004). High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics, 42(1-9), 931-935. doi:10.1016/j.ultras.2004.01.089Monsoriu, J. A., Calatayud, A., Remon, L., Furlan, W. D., Saavedra, G., & Andres, P. (2013). Bifocal Fibonacci Diffractive Lenses. IEEE Photonics Journal, 5(3), 3400106-3400106. doi:10.1109/jphot.2013.2248707Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971Ferrando, V., Giménez, F., Furlan, W. D., & Monsoriu, J. A. (2015). Bifractal focusing and imaging properties of Thue–Morse Zone Plates. Optics Express, 23(15), 19846. doi:10.1364/oe.23.019846Machado, F., Ferrando, V., Furlan, W. D., & Monsoriu, J. A. (2017). Diffractive m-bonacci lenses. Optics Express, 25(7), 8267. doi:10.1364/oe.25.00826
Analysis of Predistortion Techniques on Fresnel Zone Plates in Ultrasound Applications
[EN] In this work, we analyze the effect of predistortion techniques on the focusing profile of Fresnel Zone Plates (FZPs) in ultrasound applications. This novel predistortion method is based on either increasing or decreasing the width of some of the FZP Fresnel rings by a certain amount. We investigate how the magnitude of the predistortion, as well as the number and location of the predistorted rings, influences the lens focusing profile. This focusing profile can be affected in different ways depending on the area of the lens where the predistortion is applied. It is shown that when the inner area of the lens, closer to its center, is predistorted, this technique allows the control of the focal depth at the main focus. However, when the predistortion is applied to an area farther from the center of the lens, the acoustic intensity distribution among the main focus and the closest adjacent secondary foci can be tailored at a certain degree. This predistortion technique shows great potential and can be used to control, modify and shape the FZP focusing profile in both industrial and therapeutic applications.This work has been supported by Spanish MICINN RTI2018-100792-B-I00 project and Generalitat Valenciana AICO/2020/139 project.Fuster Escuder, JM.; Pérez-López, S.; Belmar Ibáñez, F.; Candelas Valiente, P. (2021). Analysis of Predistortion Techniques on Fresnel Zone Plates in Ultrasound Applications. Sensors. 21(15):1-12. https://doi.org/10.3390/s21155066S112211
Numerical simulation and laboratory measurements on an open tunable acoustic barrier
[EN] A new open, thin and low frequency acoustic barrier is presented. These barriers, based on arrays of isolated pickets produce high acoustic attenuation in a selective range of frequencies related to their geometry and distribution. These open barriers are acoustically competitive with traditional ones, which are based on con-tinuous and rigid materials. To show its versatility to in attenuating diÂżerent selected ranges of frequencies, a compact numerical model is presented.
DiÂżerent cases are analysed and compared with experimental results. The accuracy of the experimental re-sults compared to the simulated ones allow us to use the compact model to design these barriers in order to reduce both industrial and traÂżc noise on demand and to introduce them into the noise control market.This work was financially supported by the Spanish Ministry of Science and Innovation through project MAT2010-16879.Rubio Michavila, C.; Castiñeira Ibáñez, S.; Uris MartĂnez, A.; Belmar Ibáñez, F.; Candelas Valiente, P. (2018). Numerical simulation and laboratory measurements on an open tunable acoustic barrier. Applied Acoustics. 141:144-150. https://doi.org/10.1016/j.apacoust.2018.07.002S14415014
Transient Analysis of Fresnel Zone Plates for Ultrasound Focusing Applications
[EN] Fresnel Zone Plates are planar lenses that can be used to focus ultrasound beams. This kind of acoustic lenses can play a key role in the resolution of ultrasonic NDT systems. In this type of pulse-echo applications, the pulse duration is an important parameter that specifies the axial resolution, and thus, shorter ultrasound pulses provide higher resolutions. However, acoustic lenses exhibit a transient response that should be considered when setting the pulse duration, as pulses shorter than the transient state duration result in degradation in the response of acoustic lenses in terms of focal intensity, focal displacement, and lateral and axial resolutions. In this work, a thorough analysis of the transient response of Fresnel Zone Plates is discussed, demonstrating that the transient state should be considered in order to achieve optimal focusing performance. Theoretical and numerical results are presented, showing very good agreement.This work has been supported by Spanish MICINN RTI2018-100792-B-I00 project, Generalitat Valenciana
AICO/2020/139 and the Russian Governmental program "Science" project FSWW-2020-0014. The research is
carried out within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program grant
VIU-MNOL NK 187/2020.
S.P.-L. acknowledges financial support from Universitat Politècnica de València grant
program PAID-01-18. D.T.-S. acknowledges financial support from MICINN BES-2016-07713 project.PĂ©rez-LĂłpez, S.; TarrazĂł-Serrano, D.; Dolmatov, DO.; Rubio Michavila, C.; Candelas Valiente, P. (2020). Transient Analysis of Fresnel Zone Plates for Ultrasound Focusing Applications. Sensors. 20(23):1-9. https://doi.org/10.3390/s20236824S192023Albu, S., Joyce, E., Paniwnyk, L., Lorimer, J. P., & Mason, T. J. (2004). Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrasonics Sonochemistry, 11(3-4), 261-265. doi:10.1016/j.ultsonch.2004.01.015Li, J.-T., Han, J.-F., Yang, J.-H., & Li, T.-S. (2003). An efficient synthesis of 3,4-dihydropyrimidin-2-ones catalyzed by NH2SO3H under ultrasound irradiation. Ultrasonics Sonochemistry, 10(3), 119-122. doi:10.1016/s1350-4177(03)00092-0McCann, D. ., & Forde, M. . (2001). Review of NDT methods in the assessment of concrete and masonry structures. NDT & E International, 34(2), 71-84. doi:10.1016/s0963-8695(00)00032-3Chen, J., Xiao, J., Lisevych, D., Shakouri, A., & Fan, Z. (2018). Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nature Communications, 9(1). doi:10.1038/s41467-018-07315-6Thomas, J.-L., & Fink, M. A. (1996). Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 43(6), 1122-1129. doi:10.1109/58.542055Melde, K., Mark, A. G., Qiu, T., & Fischer, P. (2016). Holograms for acoustics. Nature, 537(7621), 518-522. doi:10.1038/nature19755Castiñeira-Ibáñez, S., TarrazĂł-Serrano, D., Fuster, J., Candelas, P., & Rubio, C. (2018). Polyadic Cantor Fractal Ultrasonic Lenses: Design and Characterization. Applied Sciences, 8(8), 1389. doi:10.3390/app8081389Rubio, C., Fuster, J., Castiñeira-Ibáñez, S., Uris, A., Belmar, F., & Candelas, P. (2017). Pinhole Zone Plate Lens for Ultrasound Focusing. Sensors, 17(7), 1690. doi:10.3390/s17071690Zhou, Q., Xu, Z., & Liu, X. (2019). High efficiency acoustic Fresnel lens. Journal of Physics D: Applied Physics, 53(6), 065302. doi:10.1088/1361-6463/ab5878Schindel, D. W., Bashford, A. G., & Hutchins, D. A. (1997). Focussing of ultrasonic waves in air using a micromachined Fresnel zone-plate. Ultrasonics, 35(4), 275-285. doi:10.1016/s0041-624x(97)00011-5Calvo, D. C., Thangawng, A. L., Nicholas, M., & Layman, C. N. (2015). Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters, 107(1), 014103. doi:10.1063/1.4926607TarrazĂł-Serrano, D., PĂ©rez-LĂłpez, S., Candelas, P., Uris, A., & Rubio, C. (2019). Acoustic Focusing Enhancement In Fresnel Zone Plate Lenses. Scientific Reports, 9(1). doi:10.1038/s41598-019-43495-xSalazar, J., TurĂł, A., Chávez, J. A., Ortega, J. A., & GarcĂa, M. J. (2000). Transducer resolution enhancement by combining different excitation pulses. Ultrasonics, 38(1-8), 145-150. doi:10.1016/s0041-624x(99)00177-8Salazar, J., Turo, A., Chavez, J. A., Ortega, J. A., & Garcia, M. J. (2003). High-power high-resolution pulser for air-coupled ultrasonic nde applications. IEEE Transactions on Instrumentation and Measurement, 52(6), 1792-1798. doi:10.1109/tim.2003.820445Oelze, M. (2007). Bandwidth and resolution enhancement through pulse compression. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 54(4), 768-781. doi:10.1109/tuffc.2007.310Konovalov, S. I., & Kuz’menko, A. G. (2015). On the optimization of the shapes of short-duration acoustic pulses for solving probing problems in immersion tests. Russian Journal of Nondestructive Testing, 51(2), 101-107. doi:10.1134/s106183091502005
Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures
[EN] In this work, we present a configurable spherical lens for underwater focusing applications, which consists on a hollow ABS container filled with a liquid mixture. Two miscible liquids with different sound speeds are required to implement this novel configurable lens. We show that by adjusting the mixing ratio between the volumes of both liquids, the sound speed of the liquid mixture can be accurately selected. This results in a modification of the acoustic jet properties and a continuous tuning on the lens focal length. This procedure can be fully automatized providing a dynamic control mechanism that can shift the lens focal length to any desired value inside a continuous range in both directions. Depending on the acoustic properties of the selected liquids, subwavelength resolution or even beyond the diffraction limit resolution can be achieved. We provide experimental measurements for ethanol-water mixtures achieving subwavelength resolution for a certain focal length ranging between 34.6 and 42.8 mm.This work has been supported by Spanish MINECO TEC2015-70939-R and MICINN RTI2018-100792-B-I00 projects. S.P.-L. acknowledges financial support from Universitat Politecnica de Valencia grant program PAID01-18. I.V.M. and O.V.M. acknowledge support from the Tomsk Polytechnic University Enhancement Program.PĂ©rez-LĂłpez, S.; Fuster, JM.; Minin, IV.; Minin, OV.; Candelas Valiente, P. (2019). Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures. Scientific Reports. 9:1-7. https://doi.org/10.1038/s41598-019-50019-0S179Lu, Y. F., Zhang, L., Song, W. D., Zheng, Y. W. & Luk’yanchuk, B. S. Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation. J. Exp. Theor. Phys. Lett. 72, 457–459, https://doi.org/10.1134/1.1339899 (2000).Chen, Z., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214, https://doi.org/10.1364/OPEX.12.001214 (2004).Heifetz, A., Kong, S.-C., Sahakian, A. V., Taflove, A. & Backman, V. Photonic Nanojets. J. Comput. Theor. Nanosci. 6, 1979–1992, https://doi.org/10.1166/jctn.2009.1254 (2009).Thomas, D. C., Gee, K. L. & Turley, R. S. A balloon lens: Acoustic scattering from a penetrable sphere. Am. J. Phys. 77, 197–203, https://doi.org/10.1119/1.3041420 (2009).Parrales Borrero, M. A., PĂ©rez-Saborid, M. & Fernández GarcĂa, J. M. Acoustic scattering from a spherical lens irradiated by a finite transducer: Focusing effect and refraction. Am. J. Phys. 79, 401–408, https://doi.org/10.1119/1.3546092 (2011).Minin, O. V. & Minin, I. V. Acoustojet: acoustic analogue of photonic jet phenomenon based on penetrable 3D particle. Opt. Quantum Electron. 49, 54, https://doi.org/10.1007/s11082-017-0893-y (2017).Lopes, J. H. et al. Focusing Acoustic Beams with a Ball-Shaped Lens beyond the Diffraction Limit. Phys. Rev. Appl. 8, 024013, https://doi.org/10.1103/PhysRevApplied.8.024013 (2017).Veira Canle, D. et al. Practical realization of a sub-l/2 acoustic jet. Sci. Reports 9, 5189, https://doi.org/10.1038/s41598-019-41335-6 (2019).Chen, J., Xiao, J., Lisevych, D., Shakouri, A. & Fan, Z. Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nat. Commun. 9, 4920, https://doi.org/10.1038/s41467-018-07315-6 (2018).Assouar, B. et al. Acoustic metasurfaces. Nat. Rev. Mater. 3, 460–472, https://doi.org/10.1038/s41578-018-0061-4 (2018).Al Jahdali, R. & Wu, Y. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces. Appl. Phys. Lett. 108, 031902, https://doi.org/10.1063/1.4939932 (2016).JimĂ©nez-GambĂn, S., JimĂ©nez, N., Benlloch, J. M. & Camarena, F. Holograms to focus arbitrary ultrasonic fields through the skull. 1902.06716 (2019).Hyun, J. et al. Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range. Sci. Reports 8, 9131, https://doi.org/10.1038/s41598-018-27312-5 (2018).Chen, J., Rao, J., Lisevych, D. & Fan, Z. Broadband ultrasonic focusing in water with an ultra-compact metasurface lens. Appl. Phys. Lett. 114, 104101, https://doi.org/10.1063/1.5090956 (2019).Chen, J., Sun, Z. & Fan, Z. Groove-structured meta-surface for patterned sub-diffraction sound focusing. Appl. Phys. Lett. 114, 254102, https://doi.org/10.1063/1.5096258 (2019).Oku, H., Hashimoto, K. & Ishikawa, M. Variable-focus lens with 1-kHz bandwidth. Opt. Express 12, 2138, https://doi.org/10.1364/OPEX.12.002138 (2004).Honma, M., Nose, T., Yanase, S., Yamaguchi, R. & Sato, S. Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles. Opt. Express 17, 10998, https://doi.org/10.1364/OE.17.010998 (2009).Gorman, C. B., Biebuyck, H. A. & Whitesides, G. M. Control of the Shape of Liquid Lenses on a Modified Gold Surface Using an Applied Electrical Potential across a Self-Assembled Monolayer. Langmuir 11, 2242–2246, https://doi.org/10.1021/la00006a063 (1995).Berge, B. & Peseux, J. Variable focal lens controlled by an external voltage: An application of electrowetting. The Eur. Phys. J. E 3, 159–163, https://doi.org/10.1007/s101890070029 (2000).LĂłpez, C. A. & Hirsa, A. H. Fast focusing using a pinned-contact oscillating liquid lens. Nat. Photonics 2, 610–613, https://doi.org/10.1038/nphoton.2008.198 (2008)
- …