2,796 research outputs found

    Mad2, Bub3, and Mps1 regulate chromosome segregation and mitotic synchrony in Giardia intestinalis, a binucleate protist lacking an anaphase-promoting complex.

    Get PDF
    The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either located on chromosomes or in the cytoplasm, depending on the cell cycle stage. Depletion of Bub3, Mad2, or Mps1 resulted in a lowered mitotic index, errors in chromosome segregation (including lagging chromosomes), and abnormalities in spindle morphology. During interphase, MCC knockdown cells have an abnormal number of nuclei, either one nucleus usually on the left-hand side of the cell or two nuclei with one mislocalized. These results suggest that the minimal set of MCC proteins in Giardia play a major role in regulating many aspects of mitosis, including chromosome segregation, coordination of mitosis between the two nuclei, and subsequent nuclear positioning. The critical importance of MCC proteins in an organism that lacks their canonical target, the APC/C, suggests a broader role for these proteins and hints at new pathways to be discovered

    A permeabilized cell model for studying cell division: a comparison of anaphase chromosome movement and cleavage furrow constriction in lysed PtK1 cells.

    Get PDF
    After lysis in a Brij 58-polyethylene glycol medium, PtK1 cells are permeable to small molecules, such as erythrosin B, and to proteins, such as rhodamine-labeled FAB, myosin subfragment-1, and tubulin. Holes are present in the plasma membrane, and the mitochondria are swollen and distorted, but other membrane-bounded organelles of the lysed cell model are not noticeably altered. After lysis, the mitotic apparatus is functional; chromosomes move poleward and the spindle elongates. Cells lysed while in cytokinesis will continue to divide for several minutes. Addition of crude tubulin extracts, MAP-free tubulin, or taxol to the lysis medium retards anaphase chromosome movements but does not affect cleavage. On the other hand, N-ethylmaleimide-modified myosin subfragment-1, phalloidin, and cytochalasin B inhibit cleavage but have no effect on anaphase chromosome movements under identical lysis conditions. These results suggest that actomyosin plays no functional role in anaphase chromosome movement in mammalian tissue culture cells and that microtubule depolymerization is a rate-limiting step for chromosome-to-pole movements

    A comparison of the distribution of actin and tubulin in the mammalian mitotic spindle as seen by indirect immunofluorescence

    Get PDF
    Rabbit antibodies against actin and tubulin were used in an indirect immunofluorescence study of the structure of the mitotic spindle of PtK1 cells after lysis under conditions that preserve anaphase chromosome movement. During early prophase there is no antiactin staining associated with the mitotic centers, but by late prophase, as the spindle is beginning to form, a small ball of actin antigenicity is found beside the nucleus; After nuclear envelope breakdown, the actiactin stains the region around each mitotic center, and becomes organized into fibers that run between the chromosomes and the poles. Colchicine blocks this organization, but does not disrupt the staining at the poles. At metaphase the antiactin reveals a halo of ill-defined radius around each spindle pole and fibers that run from the poles to the metaphase plate. Antitubulin shows astral rays, fibers running from chromosomes to poles, and some fibers that run across the metaphase plate. At anaphase, there is a shortening of the antiactin-stained fibers, leaving a zone which is essentially free of actin-staining fluorescence between the separating chromosomes. Antitubulin stains the region between chromosomes and poles, but also reveals substantial fibers running through the zone between separating chromosomes. Cells fixed during cytokinesis show actin in the region of the cleavage furrow, while antitubulin reveals the fibrous spindle remnant that runs between daughter cells. These results suggest that actin is a component of the mammalian mitotic spindle, that the distribution of actin differs from that of tubulin and that the distributions of these two fibrous proteins change in different ways during anaphase
    • …
    corecore