46 research outputs found

    Efficient estimation of nearly sparse many-body quantum Hamiltonians

    Full text link
    We develop an efficient and robust approach to Hamiltonian identification for multipartite quantum systems based on the method of compressed sensing. This work demonstrates that with only O(s log(d)) experimental configurations, consisting of random local preparations and measurements, one can estimate the Hamiltonian of a d-dimensional system, provided that the Hamiltonian is nearly s-sparse in a known basis. We numerically simulate the performance of this algorithm for three- and four-body interactions in spin-coupled quantum dots and atoms in optical lattices. Furthermore, we apply the algorithm to characterize Hamiltonian fine structure and unknown system-bath interactions.Comment: 8 pages, 2 figures. Title is changed. Detailed error analysis is added. Figures are updated with additional clarifying discussion

    High-dimensional wave atoms and compression of seismic datasets

    Get PDF
    Wave atoms are a low-redundancy alternative to curvelets, suitable for high-dimensional seismic data processing. This abstract extends the wave atom orthobasis construction to 3D, 4D, and 5D Cartesian arrays, and parallelizes it in a shared-memory environment. An implementation of the algorithm for NVIDIA CUDA capable graphics processing units (GPU) is also developed to accelerate computation for 2D and 3D data. The new transforms are benchmarked against the Fourier transform for compression of data generated from synthetic 2D and 3D acoustic models.National Science Foundation (U.S.); Alfred P. Sloan Foundatio

    Beyond convergence rates: Exact recovery with Tikhonov regularization with sparsity constraints

    Full text link
    The Tikhonov regularization of linear ill-posed problems with an â„“1\ell^1 penalty is considered. We recall results for linear convergence rates and results on exact recovery of the support. Moreover, we derive conditions for exact support recovery which are especially applicable in the case of ill-posed problems, where other conditions, e.g. based on the so-called coherence or the restricted isometry property are usually not applicable. The obtained results also show that the regularized solutions do not only converge in the â„“1\ell^1-norm but also in the vector space â„“0\ell^0 (when considered as the strict inductive limit of the spaces Rn\R^n as nn tends to infinity). Additionally, the relations between different conditions for exact support recovery and linear convergence rates are investigated. With an imaging example from digital holography the applicability of the obtained results is illustrated, i.e. that one may check a priori if the experimental setup guarantees exact recovery with Tikhonov regularization with sparsity constraints

    Matrix-free interior point method for compressed sensing problems

    Get PDF
    We consider a class of optimization problems for sparse signal reconstruction which arise in the field of Compressed Sensing (CS). A plethora of approaches and solvers exist for such problems, for example GPSR, FPC AS, SPGL1, NestA, \ell_{1}_\ell_{s}, PDCO to mention a few. Compressed Sensing applications lead to very well conditioned optimization problems and therefore can be solved easily by simple first-order methods. Interior point methods (IPMs) rely on the Newton method hence they use the second-order information. They have numerous advantageous features and one clear drawback: being the second-order approach they need to solve linear equations and this operation has (in the general dense case) an O(n3)O(n^3) computational complexity. Attempts have been made to specialize IPMs to sparse reconstruction problems and they have led to interesting developments implemented in â„“1_â„“s\ell_1\_\ell_s and PDCO softwares. We go a few steps further. First, we use the matrix-free interior point method, an approach which redesigns IPM to avoid the need to explicitly formulate (and store) the Newton equation systems. Secondly, we exploit the special features of the signal processing matrices within the matrix-free IPM. Two such features are of particular interest: an excellent conditioning of these matrices and the ability to perform inexpensive (low complexity) matrix-vector multiplications with them. Computational experience with large scale one-dimensional signals confirms that the new approach is efficient and offers an attractive alternative to other state-of-the-art solvers
    corecore