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SUMMARY

Wave atoms are a low-redundancy alternative to curvelets, suit-
able for high-dimensional seismic data processing. This ab-
stract extends the wave atom orthobasis construction to 3D,
4D, and 5D Cartesian arrays, and parallelizes it in a shared-
memory environment. An implementation of the algorithm
for NVIDIA CUDA capable graphics processing units (GPU)
is also developed to accelerate computation for 2D and 3D
data. The new transforms are benchmarked against the Fourier
transform for compression of data generated from synthetic 2D
and 3D acoustic models.

INTRODUCTION

Wave atoms are a relatively recent addition to the repertoire of
harmonic analysis transforms. They were introduced by De-
manet and Ying (2007a,b) for the efficient representation of os-
cillatory patterns in image processing, e.g., the coda portion of
2D seismic shot gathers. They were also used by Demanet and
Ying (2009) to define a fast solver for time-dependent acoustic
wave propagation in heterogeneous media, not limited by the
CFL condition. The basis of wave atoms is a careful construc-
tion of Gaussian-like wave packets that allows fast forward and
inverse transforms.

Wave atoms share similarities to the tight frame of curvelets in-
troduced by Candés and Donoho (2004); Candés et al. (2006)
and used extensively in seismic imaging (Hennenfent and Her-
rmann, 2006; Herrmann et al., 2007, 2008):

• The basis elements are multiscale directional wave pack-
ets and are localized both in space (x) and in wave-
vector (k) space.

• As the scale is refined, the wavelength of the oscilla-
tions decreases proportional to the square of the diam-
eter of the wave packet’s essential support.

• The transform is computed with fast algorithms based
on the fast Fourier transform (FFT).

The two transforms are however markedly different. High-
quality curvelets have redundancy 7.5 in 2D and 50 in 3D
(Candés et al., 2006; Ying et al., 2005), but wave atoms are
designed as an orthonormal basis, and hence have redundancy
1 regardless of the dimension. This is advantageous in high-
dimensional situations where redundancy causes an intractable
memory overhead. While curvelets can efficiently represent
narrow, anisotropic bandlimited wavefronts, wave atoms are
more similar to plane waves localized by isotropic envelopes,
hence can be viewed as geometrically simpler. Additionally, in
contrast to Gabor and short-time Fourier transforms, forward

and inverse wave atom transforms can both be computed fast.
A discussion of how wave atoms compare and contrast with
other directional transforms can be found in Demanet (2006).
For other wavelet-based alternatives for seismic data compres-
sion, see Wavelet Packets in Wu et al. (2006); Wang et al.
(2010), high-dimensional Wavelets in Villasenor et al. (1996),
Dreamlets in Geng et al. (2009), Seislets in Fomel (2006), and
also Duval and Nguyen (1999); Vassiliou and Wickerhouser
(1997); Averbuch et al. (2001).

In this note we show that the construction of wave atoms can
be extended in a natural way to an arbitrary number of dimen-
sions, with complexity comparable to that of the FFT. Imple-
mentations of the resulting transforms for conventional com-
puting clusters and for graphical processing units (GPU) are
potentially competitive tools for large-scale seismic data pro-
cessing. Beyond data compression, possible applications in-
clude data denoising, interpolation of missing or unequispaced
data, recovery from shot aggregates (encoded sources), and
sparse regularization for full waveform inversion.

TRANSFORM ARCHITECTURE

The wave atom basis elements are functions of x = (x1, . . . ,xd)
and are indexed by integer vectors µ = ( j,m,n), with scale j,
wave vector index m = (m1, . . . ,md), and spatial translation
index n = (n1, . . . ,nd). The wave atom architecture involves a
precise set of 1D template profiles ψm(x) defined by Equation
7 in Demanet and Ying (2007a), such that their Fourier trans-
forms ψ̂m(k) tile k-space and the spatial translates ψm(x− n)
form an orthonormal basis. High-dimensional wave atoms are
then formed as individual tensor products of these 1D profiles,
dilated or contracted to the same dyadic scale j,

ϕµ (x) = 2 jd/2
(

ψm1(2
jx1−n1)× . . .×ψmd (2

jxd −nd)
)
.

The Fourier transform ϕ̂µ (k) consists of 2d bumps localized
in the neighborhood of (±k1,µ , . . . ,±kd,µ ) for all possible sign
combinations, where kµ = (k1,µ , . . . ,kd,µ ) = π2 jm.

To make the collection of wave atoms an orthobasis, the wave
vector index m has to be further restricted as a function of
j, so that together ( j,m) span the nodes of a wavelet packet
tree. We adopt the same choice of restriction as Demanet and
Ying (2007b,a, 2009), that is C12 j ≤ ‖m‖∞ ≤ C22 j for ade-
quate constants C1,C2.

Note that while individual basis elements are tensor products
of 1D functions, the resulting collection of ϕµ is not a tensor
product basis. It cannot be computed by applying 1D trans-
forms dimension by dimension (like the Fourier transform).
A tensor product basis would require as many scale indices
j1, . . . , jd as there are dimensions; in contrast, our construction
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is a native multiresolution with a single scale index j. Har-
monic analysts use the word “nonstandard” to refer to such
bases, which are not tensor product bases, but whose elements
may individually be tensor products.

Functions of x can then be expanded in the wave atom basis,

f (x) =
∑

µ

cµ ϕµ , cµ = 〈ϕµ , f 〉, (1)

or f =Wc and c =W ∗ f for short. Compression is achieved by
setting to zero the coefficients below some threshold. Sparse
regularization can be done by penalizing the `1 norm of the
coefficients,

∑
µ
|cµ |, in addition to fitting seismogram data in

the scope of an inversion scheme.

Figure 1 shows an example of a 3D wave atom on a 64×
64×64 cube, though much larger grids are considered below.
The three pictures on top show the three 2D coordinate plane
cross-sections of a 3D wave atom in x, and the three pictures
on bottom show the corresponding cross-sections in the wave-
vector domain k. Each wave atom is a superposition of 8 plane
waves with wave vectors given by all the possible sign combi-
nations of (±k1,µ ,±k2,µ ,±k3,µ ), then windowed by a smooth
compactly-supported envelope function in the wave-vector do-
main. As a result, wave atoms are not compactly supported yet
they decay quickly in x.
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Figure 1: Example of 3D wave atom with scale j = 1, wave-
vector index m = [1,3,5], and spatial index n = [1,1,1]. Spa-
tial cross-sections along the coordinate planes (top row) and
corresponding wave-vector cross-sections (bottom row).

To put the wave atom construction in perspective, we also im-
plement a variant where the index j is removed, resulting in a
“monoscale” wave atom transform. The definition is the same
as earlier, with j fixed to an integer value near log2

√
N, for N

points per dimension, and without restriction on m. As a con-
sequence, the basis functions indexed by m now tile k-space
in a uniform manner. Monoscale wave atoms can be viewed as
a fast Gabor transform with a fast inverse.

At the expense of a redundancy of 2d−1, there exists another
“tight-frame” variant of the (multiscale) wave atom with only
two bumps in the wave vector domain. For this variant, in
which construction involves Hilbert transforms, (1) remains

valid. No numerical experiments involving this variant are re-
ported here; see Demanet and Ying (2007b,a, 2009) for details
of the 2D case.

ALGORITHM AND PARALLELIZATION

The forward transform f (x)→ cµ is computed a follows. As-
sume (without loss of generality) that the grid has N points in
each dimension, and let L be the width of one bump of ϕ̂µ (k)
in k-space.

1. Take a fast Fourier transform (FFT) of size Nd of f (x)
to get f̂ (k).

2. For fixed ( j,m), wrap f̂ (k)ϕ̂µ (k) by periodization to
a cube of sides of length L centered at the origin. over
the support of ϕ̂µ (k). Then perform a small inverse
FFT of size (L)d of the result, to get the coefficients cµ

indexed by n, for fixed ( j,m).

3. Repeat over all ( j,m).

The wrapping operation needed to achieve redundancy 1 is de-
tailed in Demanet and Ying (2007b,a). Since wave atoms form
an orthonormal basis, the inverse transform is obtained from
the adjoint, and is realized by simply undoing the operations
above in reverse order. The unwrapping operation, adjoint to
wrapping, involves a sum over at most 2d values of ( j,m) for
each k, because of the overlap of the basis functions in k-
space. Both the forward and inverse transform have overall
computational complexity O(Nd logN), proportional to that of
the FFT.

The algorithm for the forward transform is easily parallelized
by assigning subsets of ( j,m) to different compute nodes. This
assignment can be as fine-grained as one ( j,m) per node or
per CPU. The only necessary communication is the one-to-all
broadcast (or “scatter”) of the values of f̂ (k) to each ( j,m) for
which ϕµ (k) 6= 0. The inverse transform results in a slightly
more complex parallel algorithm, because it involves an all-to-
one reduction (or “gather”) operation that overwrites an array
in k-space with contributions from different ( j,m). Precau-
tions must be taken to avoid two writes to occur simultaneously
on the same portion of an array.

The data arrays considered in this paper fit in the shared mem-
ory of a single machine. Distributed-memory algorithms for
applying the forward and inverse transforms may not be needed
in practice, since a larger dataset can always be divided into
pieces that can be processed independently.

The GPU implementation of the forward transform involves
partitioning the task into kernels, each of which execute on
blocks of lightweight threads. Concurrency of threads within
a single block is, in a sense, guaranteed, but threads can only
communicate within their own block. There is no block level
communication: blocks of threads must complete their tasks
independently. For the forward wave atom transform, we use
one kernel per scale j per quadrant in k-space k±i . Each m is
assigned to one block and each k in the support of ϕ̂µ , for that
block, is assigned a thread. If the dataset is too large for the
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Figure 2: Marmousi2 P-wave velocity model (G. Martin and
Marfurt, 2006).

GPU’s memory, the kernels can be further refined by partition-
ing the m indices within the pairs ( j,k±i ).

The GPU implementation of the inverse transform is more in-
volved, because multiple blocks contribute to the same loca-
tions in the output array. This problem is typically solved by
the so-called “atomic add” procedure, but this prohibitively ex-
pensive in our case. Instead, we stagger the writes to the output
array so that they are sufficiently offset, at the expense of a 2d-
fold increase in the number of kernels.

CUDA-capable GPUs allow for up to three-dimensional block
and thread layouts. As such, we do not implement the 4D and
5D transforms on the GPU.

COMPRESSION OF SEISMIC DATA

We generate a shot gather dataset from the two-dimensional
Marmousi2 P-wave velocity model, rescaled to a spatial step
of 20 m (G. Martin and Marfurt, 2006), shown in Figure 2.
The simulations use a constant-density, time-dependent acous-
tic wave equation discretized using a fourth-order accurate fi-
nite difference solver. The domain is surrounded by a perfectly
matched layer and 512 equispaced sources and 512 equispaced
receivers, per source, at depth z = 60 m were considered. The
direct wave and first reflection, due to the water-ocean floor
interface, are removed from the data set. The simulation re-
sults in 8192 time samples per trace, which are then down-
sampled by a factor 4 to result in a sampling slightly above
the Shannon-Nyquist rate. The resulting dataset has the size
512×512×2048. We also consider a shot gather dataset from
a simple three-dimensional synthetic layered salt model, on a
64×64×64 grid, surrounded by a perfectly matched layer. For
32×32 equispaced sources, and 64×64 equispaced receivers
per source, simulated wavefields were sampled 1024 times.
The resulting 5D data has the size 32× 32× 64× 64× 1024.
The 4D data used in the next section is a slice of the 5D data.
All simulations are performed with the authors’ Python Seis-
mic Imaging Toolbox (PySIT).

Edge truncation can have a strong effect on compression per-
formance. To quantify edge effects, we consider the original
data with and without tapering by a smooth window near the
edges in all three coordinates.

Compression performance is measured by the peak signal-to-
noise ratio

PSNR =−20log10
‖d− d̃‖
‖d‖

,

where ‖ · ‖ is the `2 norm, ‖d − d̃‖/‖d‖ is the relative root
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Figure 3: Input data. Top: a single shot at r = 128, without
and with tapering at the edges. Bottom: time slice at t = 1024,
without and with tapering at the edges.
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Figure 4: PSNR as the function of the percentage of zeroed
small coefficients for various transforms, for both tapered and
untapered data.

mean-squared error (RMSE), and the tilde is the operation of
thresholding the small coefficients in modulus. In Figure 4, the
PSNR is shown for 3D multiscale wave atoms, 3D monoscale
wave atoms, and the 3D Fourier transform, as the function of
the proportion of small coefficients dropped in either repre-
sentation. Both tapered and untapered seismogram data are
considered.

Figure 4 shows that monoscale and multiscale wave atoms
both offer better compression performance than the 3D Fourier
transform. Furthermore, the wave atom representations are
less sensitive to edge effects than the Fourier transform.

RUNTIME BENCHMARKS

Figure 5 shows runtimes for the forward 3D wave atom com-
putation as the function of the size of the dataset, for both
real and complex data, for the conventional (CPU-only) and
GPU parallel implementations (complex only). All computa-
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tions use double precision. The single core CPU implemen-
tation uses 1 FFTW thread and the parallel CPU implemen-
tation uses 4 FFTW threads (Frigo and Johnson, 2005). Disk
input/output time is not included in the reported times. In the
GPU case, the time needed to transfer data from the host to
the device, and from the device back to the host, is included.
These timings are generated using dual processor Intel Xeon
X5690 computer with 96 GB of RAM with an NVIDIA Fermi
C2075 GPU.

Figure 5-7 indicate that the computation time grows in pro-
portion to the size of the dataset. Moreover, from Figure 5
indicates that it is possible to obtain around three to five times
speed up when using GPU, in contrast to the CPU case with
4 FFTW threads, provided that the transform computation fits
on the GPU.

CONCLUSIONS

Wave atoms are a good alternative to the Fourier transform for
the task of compression of large seismic datasets. The trans-
form computation parallelizes favorably on shared-memory ma-
chines and on GPU.

ACKNOWLEDGMENTS

The authors thank Total SA for supporting this research. LY is
grateful to the National Science Foundation. LD is also grate-
ful to the National Science Foundation and the Alfred P. Sloan
Foundation.

10
0

10
1

10
2

10
3

224 225 226 227 228 229 230
Size of data

C
om

pu
ta
tio
n
tim

e
in
se
co
nd
s

Complex valued data, 1 FFTW thread, CPU
Complex valued data, 4 FFTW threads, CPU
Real valued data, 1 FFTW thread, CPU
Real valued data, 4 FFTW threads, CPU
Complex valued data, GPU

10
0

10
1

10
2

10
3

224 225 226 227 228 229 230
Size of data

C
om

pu
ta
tio
n
tim

e
in
se
co
nd
s

Complex valued data, 1 FFTW thread, CPU
Complex valued data, 4 FFTW threads, CPU
Real valued data, 1 FFTW thread, CPU
Real valued data, 4 FFTW threads, CPU
Complex valued data, GPU

Figure 5: Runtimes for the forward (top) and inverse (bottom)
3D wave atom transform as the function of data volume.
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Figure 6: Runtimes for the forward (top) and inverse (bottom)
4D wave atom transform as the function of data volume.
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Figure 7: Runtimes for the forward (top) and inverse (bottom)
5D wave atom transform as the function of data volume.
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