379 research outputs found

    Determination of folic acid using biosensors: a short review of recent progress

    Get PDF
    Folic acid (FA) is the synthetic surrogate of the essential B vitamin folate, alternatively named folacin, pteroylglutamic acid or vitamin B-9. FA is an electroactive compound that helps our body to create and keep our cells healthy: it acts as the main character in a variety of synthetic biological reactions such as the synthesis of purines, pyrimidine (thus being indirectly implied in DNA synthesis), fixing and methylation of DNA. Therefore, physiological folate deficiency may be responsible for severe degenerative conditions, including neural tube defects in developing embryos and megaloblastic anaemia at any age. Moreover, being a water-soluble molecule, it is constantly lost and has to be reintegrated daily; for this reason, FA supplements and food fortification are, nowadays, extremely diffused and well-established practices. Consequently, accurate, reliable and precise analytical techniques are needed to exactly determine FA concentration in various media. Thus, the aim of this review is to report on research papers of the past 5 years (2016-2020) dealing with rapid and low-cost electrochemical determination of FA in food or biological fluid samples

    Nanoflows through disordered media: a joint Lattice Boltzmann and Molecular Dynamics investigation

    Full text link
    We investigate nanoflows through dilute disordered media by means of joint lattice Boltzmann (LB) and molecular dynamics (MD) simulations -- when the size of the obstacles is comparable to the size of the flowing particles -- for randomly located spheres and for a correlated particle-gel. In both cases at sufficiently low solid fraction, Ί<0.01\Phi<0.01, LB and MD provide similar values of the permeability. However, for Ί>0.01\Phi > 0.01, MD shows that molecular size effects lead to a decrease of the permeability, as compared to the Navier-Stokes predictions. For gels, the simulations highlights a surplus of permeability, which can be accommodated within a rescaling of the effective radius of the gel monomers.Comment: 4 pages, 4 figure

    Microfluidic flow injection immunoassay system for algal toxins determination: a case of study

    Get PDF
    A novel flow injection microfluidic immunoassay system for continuous monitoring of saxitoxin, a lethal biotoxin, in seawater samples is presented in this article. The system consists of a preimmobilized G protein immunoaffinity column connected in line with a lab-on-chip setup. The detection of saxitoxin in seawater was carried out in two steps: an offline incubation step (competition reaction) performed between the analyte of interest (saxitoxin or Ag, as standard or seawater sample) and a tracer (an enzyme-conjugated antigen or Ag*) toward a specific polyclonal antibody. Then, the mixture was injected through a "loop" of a few mu L using a six-way injection valve into a bioreactor, in line with the valve. The bioreactor consisted of a small glass column, manually filled with resin upon which G protein has been immobilized. When the mixture flowed through the bioreactor, all the antibody-antigen complex, formed during the competition step, is retained by the G protein. The tracer molecules that do not interact with the capture antibody and protein G are eluted out of the column, collected, and mixed with an enzymatic substrate directly within the microfluidic chip, via the use of two peristaltic pumps. When Ag* was present, a color change (absorbance variation, Delta Abs) of the solution is detected at a fixed wavelength (655 nm) by an optical chip docking system and registered by a computer. The amount of saxitoxin, present in the sample (or standard), that generates the variation of the intensity of the color, will be directly proportional to the concentration of the analyte in the analyzed solution. Indeed, the absorbance response increased proportionally to the enzymatic product and to the concentration of saxitoxin in the range of 3.5 x 10(-7)-2 x 10(-5) ng ml(-1) with a detection limit of 1 x 10(-7) ng ml(-1) (RSD% 15, S N-1 equal to 3). The immunoanalytical system has been characterized, optimized, and tested with seawater samples. This analytical approach, combined with the transportable and small-sized instrumentation, allows for easy in situ monitoring of marine water contaminations

    Tailoring the chemical structure of cellulose nanocrystals by amine functionalization

    Get PDF
    The surface functionalization of cellulose nanocrystals is presently considered a useful and straightforward tool for accessing very reliable biocompatible and biodegradable nanostructures with tailored physical and chemical properties. However, to date the fine characterization of the chemical appendages introduced onto cellulose nanocrystals remains a challenge, due to the low sensitivity displayed by the most common techniques towards surface functionalization. In this paper, we demonstrate the easy functionalization of cellulose nanocrystals with aliphatic and aromatic amines, demonstrating the tunability of their properties in dependence on the selected functionality. Then, we apply to colloidal suspensions of modified nanocrystals 1H NMR analysis to elucidate their surface structure. To the best of our knowledge, this is the first report where such investigation was performed on cellulose nanocrystals presenting both surface and reducing end modification. These results involve interesting implications for the fields of cultural heritage and of materials chemistry

    Label-free electrochemical immunosensor as a reliable point-of-care device for the detection of Interleukin-6 in serum samples from patients with psoriasis

    Get PDF
    interleukin-6 (IL-6) plays a crucial role in autoimmunity and chronic inflammation. this study aims to develop a low-cost, simple-to-manufacture, and user-friendly label-free electrochemical point-of-care device for the rapid detection of IL-6 in patients with psoriasis. precisely, a sandwich-based format immunosensor was developed using two primary antibodies (mAb-IL6 clone-5 and clone-7) and screen-printed electrodes modified with an inexpensive recycling electrochemical enhancing material, called biochar. mAb-IL6 clone-5 was used as a covalently immobilized capture bioreceptor on modified electrodes, and mAb-IL6 clone-7 was used to recognize the immunocomplex (Anti-IL6 clone-5 and IL-6) and form the sandwich. cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to conduct electrochemical characterization of the layer-by-layer assembly of the immunosensor, while square wave voltammetry (SWV) was used to perform the sensing. the developed immunosensor demonstrated robust analytical performance in buffer solution, with a wide linear range (LR) by varying from 2 to 250 pg/mL, a good limit of detection (LOD) of 0.78 pg/mL and reproducibility (RSD&lt;7%). In addition, a spectrophotometric ELISA kit was employed to validate the results obtained with the label-free device by analyzing twenty-five serum samples from control and patients affected by psoriasis. a strong correlation in terms of pg/mL concentration of IL-6 was found comparing the two methods, with the advantage for our label-free biosensor of an ease use and a quicker detection time. based on IL-6 levels, the proposed immunosensor is a dependable, non-invasive screening device capable of predicting disease onset, progression, and treatment efficacy

    Hereditary breast and ovarian cancer in families from southern Italy (Sicily)—Prevalence and geographic distribution of pathogenic variants in BRCA1/2 genes

    Get PDF
    Recent advances in the detection of germline pathogenic variants (PVs) in BRCA1/2 genes have allowed a deeper understanding of the BRCA-related cancer risk. Several studies showed a significant heterogeneity in the prevalence of PVs across different populations. Because little is known about this in the Sicilian population, our study was aimed at investigating the prevalence and geographic distribution of inherited BRCA1/2 PVs in families from this specific geographical area of Southern Italy. We retrospectively collected and analyzed all clinical information of 1346 hereditary breast and/or ovarian cancer patients genetically tested for germline BRCA1/2 PVs at University Hospital Policlinico “P. Giaccone” of Palermo from January 1999 to October 2019. Thirty PVs were more frequently observed in the Sicilian population but only some of these showed a specific territorial prevalence, unlike other Italian and European regions. This difference could be attributed to the genetic heterogeneity of the Sicilian people and its historical background. Therefore hereditary breast and ovarian cancers could be predominantly due to BRCA1/2 PVs different from those usually detected in other geographical areas of Italy and Europe. Our investigation led us to hypothesize that a higher prevalence of some germline BRCA PVs in Sicily could be a population-specific genetic feature of BRCA-positive carriers

    Prevalence and Spectrum of Germline BRCA1 and BRCA2 Variants of Uncertain Significance in Breast/Ovarian Cancer: Mysterious Signals From the Genome

    Get PDF
    About 10–20% of breast/ovarian (BC/OC) cancer patients undergoing germline BRCA1/2 genetic testing have been shown to harbor Variants of Uncertain Significance (VUSs). Since little is known about the prevalence of germline BRCA1/2 VUS in Southern Italy, our study aimed at describing the spectrum of these variants detected in BC/OC patients in order to improve the identification of potentially high-risk BRCA variants helpful in patient clinical management. Eight hundred and seventy-four BC or OC patients, enrolled from October 2016 to December 2020 at the “Sicilian Regional Center for the Prevention, Diagnosis and Treatment of Rare and Heredo-Familial Tumors” of University Hospital Policlinico “P. Giaccone” of Palermo, were genetically tested for germline BRCA1/2 variants through Next-Generation Sequencing analysis. The mutational screening showed that 639 (73.1%) out of 874 patients were BRCA-w.t., whereas 67 (7.7%) were carriers of germline BRCA1/2 VUSs, and 168 (19.2%) harbored germline BRCA1/2 pathogenic/likely pathogenic variants. Our analysis revealed the presence of 59 different VUSs detected in 67 patients, 46 of which were affected by BC and 21 by OC. Twenty-one (35.6%) out of 59 variants were located on BRCA1 gene, whereas 38 (64.4%) on BRCA2. We detected six alterations in BRCA1 and two in BRCA2 with unclear interpretation of clinical significance. Familial anamnesis of a patient harboring the BRCA1-c.3367G&gt;T suggests for this variant a potential of pathogenicity, therefore it should be carefully investigated. Understanding clinical significance of germline BRCA1/2 VUS could improve, in future, the identification of potentially high-risk variants useful for clinical management of BC or OC patients and family members

    Three dimensional hysdrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media

    Full text link
    We report the results of a study of multiphase flow in porous media. A Darcy's law for steady multiphase flow was investigated for both binary and ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager reciprocity were shown to be a good approximation of the simulation data. The dependence of the relative permeability coefficients on water saturation was investigated and showed good qualitative agreement with experimental data. Non-steady state invasion flows were investigated, with particular interest in the asymptotic residual oil saturation. The addition of surfactant to the invasive fluid was shown to significantly reduce the residual oil saturation.Comment: To appear in Phys. Rev.
    • 

    corecore