332 research outputs found

    Astrometric signal profile fitting for Gaia

    Full text link
    A tool for representation of the one-dimensional astrometric signal of Gaia is described and investigated in terms of fit discrepancy and astrometric performance with respect to number of parameters required. The proposed basis function is based on the aberration free response of the ideal telescope and its derivatives, weighted by the source spectral distribution. The influence of relative position of the detector pixel array with respect to the optical image is analysed, as well as the variation induced by the source spectral emission. The number of parameters required for micro-arcsec level consistency of the reconstructed function with the detected signal is found to be 11. Some considerations are devoted to the issue of calibration of the instrument response representation, taking into account the relevant aspects of source spectrum and focal plane sampling. Additional investigations and other applications are also suggested.Comment: 13 pages, 21 figures, Accepted by MNRAS 2010 January 29. Received 2010 January 28; in original form 2009 September 3

    Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach

    Get PDF
    Abstract. Assessment of landslide-triggering rainfall thresholds is useful for early warning in prone areas. In this paper, it is shown how stochastic rainfall models and hydrological and slope stability physically based models can be advantageously combined in a Monte Carlo simulation framework to generate virtually unlimited-length synthetic rainfall and related slope stability factor of safety data, exploiting the information contained in observed rainfall records and field-measurements of soil hydraulic and geotechnical parameters. The synthetic data set, dichotomized in triggering and non-triggering rainfall events, is analyzed by receiver operating characteristics (ROC) analysis to derive stochastic-input physically based thresholds that optimize the trade-off between correct and wrong predictions. Moreover, the specific modeling framework implemented in this work, based on hourly analysis, enables one to analyze the uncertainty related to variability of rainfall intensity within events and to past rainfall (antecedent rainfall). A specific focus is dedicated to the widely used power-law rainfall intensity–duration (I–D) thresholds. Results indicate that variability of intensity during rainfall events influences significantly rainfall intensity and duration associated with landslide triggering. Remarkably, when a time-variable rainfall-rate event is considered, the simulated triggering points may be separated with a very good approximation from the non-triggering ones by a I–D power-law equation, while a representation of rainfall as constant–intensity hyetographs globally leads to non-conservative results. This indicates that the I–D power-law equation is adequate to represent the triggering part due to transient infiltration produced by rainfall events of variable intensity and thus gives a physically based justification for this widely used threshold form, which provides results that are valid when landslide occurrence is mostly due to that part. These conditions are more likely to occur in hillslopes of low specific upslope contributing area, relatively high hydraulic conductivity and high critical wetness ratio. Otherwise, rainfall time history occurring before single rainfall events influences landslide triggering, determining whether a threshold based only on rainfall intensity and duration may be sufficient or it needs to be improved by the introduction of antecedent rainfall variables. Further analyses show that predictability of landslides decreases with soil depth, critical wetness ratio and the increase of vertical basal drainage (leakage) that occurs in the presence of a fractured bedrock

    Nanoflows through disordered media: a joint Lattice Boltzmann and Molecular Dynamics investigation

    Full text link
    We investigate nanoflows through dilute disordered media by means of joint lattice Boltzmann (LB) and molecular dynamics (MD) simulations -- when the size of the obstacles is comparable to the size of the flowing particles -- for randomly located spheres and for a correlated particle-gel. In both cases at sufficiently low solid fraction, Φ<0.01\Phi<0.01, LB and MD provide similar values of the permeability. However, for Φ>0.01\Phi > 0.01, MD shows that molecular size effects lead to a decrease of the permeability, as compared to the Navier-Stokes predictions. For gels, the simulations highlights a surplus of permeability, which can be accommodated within a rescaling of the effective radius of the gel monomers.Comment: 4 pages, 4 figure

    Using principal component analysis to incorporate multi-layer soil moisture information in hydrometeorological thresholds for landslide prediction: an investigation based on ERA5-Land reanalysis data

    Get PDF
    A key component for landslide early warning systems (LEWSs) is constituted by thresholds providing the conditions above which a landslide can be triggered. Traditionally, thresholds based on rainfall characteristics have been proposed, but recently, the hydrometeorological approach, combining rainfall with soil moisture or catchment storage information, is becoming widespread. Most of the hydrometeorological thresholds proposed in the literature use the soil moisture from a single layer (i.e., depth or depth range). On the other hand, multi-layered soil moisture information can be measured or can be available from reanalysis projects as well as from hydrological models. Approaches using this multi-layered information are lacking, perhaps because of the need to keep the thresholds simple and two-dimensional. In this paper, we propose principal component analysis (PCA) as an approach for deriving two-dimensional hydrometeorological thresholds that use multi-layered soil moisture information. To perform a more objective assessment we also propose a piecewise linear equation for the identification of the threshold's shape, which is more flexible than traditional choices (e.g., power law or bilinear). Comparison of the receiver operating characteristic (ROC) (true skill statistic, TSS) of thresholds based on single- and multi-layered soil moisture information also provides a novel tool for identifying the significance of multi-layered information on landslide triggering in a given region. Results for Sicily island, considering the ERA5-Land reanalysis soil moisture data (available at four different depth layers), corroborate the advantages of the hydrometeorological approach gained in spite of the coarse spatial resolution and the limited accuracy of reanalysis data. Specifically, the TSS of traditional precipitation intensity–duration thresholds is equal to 0.5, while those of the proposed hydrometeorological thresholds is significantly higher (TSS=0.71). For the analyzed region, however, multi-layered information seems not to be relevant, as performances in terms of TSS are similar to those obtained with single-layer soil moisture at the upper depths, namely 0–7 and 7–28 cm, which can imply that in Sicily landslide phenomena are mainly influenced by soil moisture in most shallow soil layers.</p
    • …
    corecore