5 research outputs found

    Automatic diagnosis of the 12-lead ECG using a deep neural network

    Get PDF
    The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice

    Tele-electrocardiography and bigdata: the CODE (Clinical Outcomes in Digital Electrocardiography) study

    Get PDF
    Digital electrocardiographs are now widely available and a large number of digital electrocardiograms (ECGs) have been recorded and stored. The present study describes the development and clinical applications of a large database of such digital ECGs, namely the CODE (Clinical Outcomes in Digital Electrocardiology) study. ECGs obtained by the Telehealth Network of Minas Gerais, Brazil, from 2010 to 17, were organized in a structured database. A hierarchical free-text machine learning algorithm recognized specific ECG diagnoses from cardiologist reports. The Glasgow ECG Analysis Program provided Minnesota Codes and automatic diagnostic statements. The presence of a specific ECG abnormality was considered when both automatic and medical diagnosis were concordant; cases of discordance were decided using heuristisc rules and manual review. The ECG database was linked to the national mortality information system using probabilistic linkage methods. From 2,470,424 ECGs, 1,773,689 patients were identified. After excluding the ECGs with technical problems and patients <16 years-old, 1,558,415 patients were studied. High performance measures were obtained using an end-to-end deep neural network trained to detect 6 types of ECG abnormalities, with F1 scores >80% and specificity >99% in an independent test dataset. We also evaluated the risk of mortality associated with the presence of atrial fibrillation (AF), which showed that AF was a strong predictor of cardiovascular mortality and mortality for all causes, with increased risk in women. In conclusion, a large database that comprises all ECGs performed by a large telehealth network can be useful for further developments in the field of digital electrocardiography, clinical cardiology and cardiovascular epidemiology
    corecore